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SUMMARY

Cullin-RING ligases (CRLs) represent the largest E3
ubiquitin ligase family in eukaryotes, and the identifi-
cation of their substrates is critical to understanding
regulation of the proteome. Using genetic and phar-
macologic Cullin inactivation coupled with genetic
(GPS) and proteomic (QUAINT) assays, we have
identified hundreds of proteins whose stabilities
or ubiquitylation status are regulated by CRLs.
Together, these approaches yielded many known
CRL substrates as well as a multitude of previously
unknown putative substrates. We demonstrate that
one substrate, NUSAP1, is an SCFCyclin F substrate
during S and G2 phases of the cell cycle and is also
degraded in response to DNA damage. This collec-
tion of regulated substrates is highly enriched for
nodes in protein interaction networks, representing
critical connections between regulatory pathways.
This demonstrates the broad role of CRL ubiquityla-
tion in all aspects of cellular biology and provides
a set of proteins likely to be key indicators of cellular
physiology.

INTRODUCTION

Ubiquitin-dependent proteolysis is a major mechanism for post-

translational reorganization of the proteome. Ubiquitylation

occurs through a cascade of three enzymes termed E1, E2,

and E3, with the E3 imparting substrate specificity. Ubiquityla-

tion can alter substrate activity or target it for degradation. We

previously identified the SCF, a modular class of E3 ubiquitin

ligases that use an interchangeable set of substrate adaptors

termed F box proteins (Bai et al., 1996). The SCF utilizes CUL1

as a scaffold, recruiting the F box family of substrate specificity

factors through an adaptor, SKP1 (Bai et al., 1996; Feldman

et al., 1997; Skowyra et al., 1997). CUL1 also binds the RING

domain protein RBX1 that, in turn, recruits an E2 (Ohta et al.,
1999; Seol et al., 1999; Skowyra et al., 1999; Tan et al., 1999).

The human genome encodes nine cullins (Cul1, 2, 3, 4A, 4B, 5,

and 7, PARC, and APC2), and each utilizes a unique set of

substrate specificity factors and adaptors (reviewed in Petroski

and Deshaies, 2005; Willems et al., 2004). These ligases are

collectively termed cullin-RING Ligases (CRLs).

With the exception of the APC/C, all CRLs require neddylation

for full activation (reviewed in Deshaies et al., 2010; Skaar and

Pagano, 2009). Nedd8 is a small ubiquitin-like protein that

attaches to substrates using similar E1, E2, and E3 enzymes.

Neddylation occurs on the cullin subunit and allosterically acti-

vates ligase activity (Duda et al., 2008; Saha and Deshaies,

2008). The chemical MLN4924 inhibits the Nedd8 E1 enzyme,

Nae1 (Brownell et al., 2010; Soucy et al., 2009), inhibiting all

CRLs.

Though transcriptional regulation of genes is frequently exam-

ined, little is known about posttranslational regulation of protein

abundance despite the existence of 500 ubiquitin ligases in

mammals and many more in plants. Furthermore, analysis of

CRL substrates in multiple organisms has revealed that many

are critical regulators of their respective pathways and often

lie downstream of signal transduction pathways. The global

identification of highly regulated CRL substrates should unveil

critical regulatory nodes that will represent key intersections

between pathways (Benanti et al., 2007; Yen and Elledge,

2008). To approach this problem, we recently described a

genetic screening platform for identifying proteins with regulated

stabilities, termed global protein stability profiling (GPS). GPS

is a fluorescent-based reporter system that combines fluores-

cent-activated cell sorting (FACS) with DNA microarray decon-

volution to systematically examine changes in protein stability

in live cells (Yen et al., 2008).

An alternative for identifying ubiquitin-regulated proteins is

mass spectrometry (MS)-based proteomics using stable isotope

labeling with amino acids in cell culture (SILAC) (Ong et al.,

2002). This has been limited due to the low abundance of ubiq-

uitinated peptides. Because the last three amino acids of ubiq-

uitin are arginine-glycine-glycine (RGG), tryptic cleavage of

ubiquitylated proteins results in the presence of a GG remnant

on the ubiquitin-modified lysine of tryptic peptides. Antibodies
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Figure 1. GPS Profiling and Chemical Genetic Inhibition of the Nedd8 Pathway Identifies CRL Substrates

(A) Schematic representation of a GPS screen. The GPS viral vector expresses a single transcript containing both DsRed and an EGFP-ORF, separated by an

IRES. (i) A GPS cell library expressing each protein encoded by the human ORFeome collection was constructed, expressing a single GFP-ORF per cell. (ii) The

library, with and without cullin inhibition, is FACS sorted into bins based on its EGFP/DsRed ratio. (iii) Genomic DNA is isolated from sorted cells, and ORFs are

PCR amplified using primers that target the viral backbone. (iv) PCR-amplified ORFs are transcribed, labeled, and hybridized to DNA microarrays containing

probes to each ORF. (v) Probes are analyzed and graphed across the bins to identify probe distributions that shift in response to CRL inhibition.

(B) HeLa and 293T cells were treated for 4 hr with increasing concentrations of MLN4924 (0, 0.1, 1, and 10 mM) and then immunoblotted for NRF2, CDT1, and

Vinculin (loading control).
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generated against this remnant can specifically recognize this

site, allowing for the enrichment of these tryptic peptides from

ubiquitylated proteins (Xu et al., 2010).

Using the approaches described above, we identified proteins

regulated by CRL ligases. This set of nearly 500 proteins is en-

riched for highly connected hub proteins in interaction networks

and represents a group of proteins that play key roles in cellular

physiology.

RESULTS

The GPS screening platform utilizes an internally normalized

fluorescent-based retroviral reporter system and combines

FACS with DNA microarray deconvolution to systematically

examine changes in protein stability (Figure 1A) (Yen et al.,

2008). GPS vectors express a single transcript encoding DsRed

and EGFP-ORFs separated by an internal ribosome entry site

(IRES). We constructed a human tissue culture cell library ex-

pressing each of the proteins encoded in the human ORFeome

collection, with each cell expressing a single EGFP-ORF. Impor-

tantly, the EGFP/DsRed ratio of each cell acts as an indirect

reporter for the half-life of the expressed ORF. Screening is per-

formed by FACS sorting the library into bins based on the EGFP/

DsRed ratio (low to high). Genomic DNA from each bin is har-

vested, and the ORFs are PCR amplified from each bin with

common primers targeting the viral backbone. PCR-amplified

ORFs are fluorescently labeled and hybridized to custom-

designed DNA microarrays (one microarray per bin), and the

intensity of each probe is measured and graphed across the

sorted bins. When performed in a comparative manner, we can

assess changes in protein stability based on changes in the

probe distribution intensity across the sorted bins (Figure 1A).

To improve GPS, we designed a lentiviral reporter vector

(pGPS-LP) (Figure S1A available online) that can infect nondi-

viding cells and has a larger packaging capacity (>10 kb).

pGPS-LP contains a PGK-puromycin cassette for selection

and a T7 promoter downstream of the ORF that significantly

improves the efficiency of PCR. pGPS-LP showed a 50-fold

increase in viral titer and a larger packaging capacity (Fig-

ure S1B). We constructed an updated GPS library using

pGPS-LP and the latest CCSB human ORFeome collection,

which includes 15,483 human ORFs covering 12,794 genes,

and we found that the updated library has significantly improved

preservation of larger ORFs (Figure S1C).

To improve the accuracy of GPS, we designedmultiple probes

for each ORF with increased stringency (Figures S1D and S1E

and Table S1). These microarrays contain 46,000 probes,

with an average of �3.3 probes per gene, and 80% of genes

have R 2 probes. We also developed a scoring system that
(C) The indicated 293T GPS cell lines were treated with MLN4924 for 4 hr and a

expressing each of the specified ORFs or an empty vector control.

(D) (Left) Scatter plot of the PSI for each probe in the screen under the two cond

analyzed in the screen.

(E) Schematic representation of a subset of the known substrates that were iden

(F) 293T cells expressing the indicated EGFP-tagged candidate substrate were

MLN4924.

See also Figures S1, S2, S3, and S6 and Tables S1, S2, and S7.
considers changes in protein stability index (DPSI), hybridization

intensity, agreement among multiple probes, and percentage

of cells with altered EGFP/DsRed ratios after treatment (percent

shift).

GPS Screen for CRL Substrates Using MLN4924
We utilized MLN4924 to interrogate the roles of CRLs on the pro-

teome using the second-generation GPS platform. MLN4924

treatment stabilized known CRL substrates, including the

CRL3 target NRF2 and the CRL4 target CDT1 (Figure 1B).

293T cells stably expressing GPS-NRF2, GPS-RBM19, or

GPS-CDC34 showed an increased EGFP/DsRed ratio when

treated with MLN4924, whereas the GPS library and GPS-nega-

tive controls (GPS-Empty and GPS-RPS2) were unaffected (Fig-

ure 1C and Figure S2C). We ultimately screened our GPS library

with 1 mMMLN4924 for 4 hr, conditions that do not affect the cell

cycle (Figure S2A).

We GPS screened a 293T lentiviral GPS library treated

with either DMSO or MLN4924 (Figure 1A). We hybridized

PCR-amplified ORFs (sorted versus unsorted) onto second-

generation DNA microarrays, using a single microarray for

each sorted bin in each condition (16 total). For each probe,

we determined the protein stability index (PSI; approximates

the statistical mean of the distribution) and graphed the probe

distribution across the eight bins, comparing treated and

untreated conditions (see Figure 1Av). The second-generation

microarrays showed strong agreement between probes for a

single gene. The standard error between probes for genes with

multiple probes is less than 0.1 for > 90% of genes. Comparison

of probe PSI between MLN4924- and DMSO-treated samples

showed a linear relationship, with an R2 value of 0.92 (Figure 1D).

When comparing treated and untreated conditions within a

single bin, each individual bin showed an R2 value R 0.91. Fig-

ure S3 shows three randomly chosen probes for a subset of

validated proteins (see below) that are stabilized by MLN4924.

The probe distributions across the eight bins are almost in-

distinguishable, suggesting strong agreement and low cross-

reactivity.

Probes were ranked according to their DPSI, and thousands

of high-priority graphs were visually inspected. Proteins with

multiple corresponding probes (when available) that showed

a significant positive shift after MLN4924 treatment were con-

sidered putative CRL substrates, yielding 244 high-priority

candidates (Table S2). Importantly, the MLN4924-GPS screen

identified a large number of well-characterized CRL substrates,

including hypoxia-inducible factor (HIF), NRF2, CDC25, the

CDK inhibitors CDKN1A and CDKN1B (p21/CIP1 and p27/

KIP1, respectively), ATF4, CYCLIN D, numerous substrate

adaptors (including F box and Kelch-BTB proteins), STAT1,
nalyzed by flow cytometry. Histograms show the EGFP/DsRed ratio for cells

itions (DMSO versus MLN4924). (Right) Histogram of the DPSI for each probe

tified in this screen.

immunoblotted to examine protein stabilization following 4 hr treatment with

Cell 147, 459–474, October 14, 2011 ª2011 Elsevier Inc. 461



JUN, and PDCD4 (Figure 1E). A recent study examining cullin in-

teractors using IP-MS/MS (Bennett et al., 2010) identified spec-

ificity factors coprecipitating with specific cullins. Becausemany

specificity factors are ubiquitylated by their cognate ligase, we

examined this data set. Of the 190 unique cullin-interacting

proteins present in the ORFeome, 96 (50%) showed a positive

shift in their probe distribution in the GPS screen, indicating

that manywere stabilized byMLN4924 treatment and confirming

that this screen identified CRL substrates.

To validate the reproducibility of the screen, we individually

tested ORFs for their response to MLN4924. We individually

subcloned 74 unique ORFs into pGPS-LP. Cell lines expressing

individual ORFs were treated with MLN4924 or DMSO and

analyzed by FACS to assess changes in the EGFP/DsRed ratio.

Forty-seven (65%) had an increased ratio after MLN4924 treat-

ment, suggesting CRL-dependent stabilization. To confirm that

this reflected an increased abundance of the tagged protein,

we immunoblotted 18 EGFP-tagged ORF cell lines and all

showed increased protein levels (Figure 1F). We also examined

the endogenous levels of 10 proteins and found that 8 increased

in abundance following MLN4924 treatment (Figure S3B).

The cumulative results of our extensive validation analysis

with MLN4924 are summarized in Table S2, and a subset of

FACS-validated proteins is shown in Figure S3A.

Proteomic Identification of CRL Substrates
To further identify substrates of CRL ligases, we employed

a peptide IP proteomic strategy. We utilized an immunoaffinity

reagent specific for tryptic ubiquitin remnants, the PTMScan

ubiquitin remnant motif antibody. This antibody specifically

recognizes a diglycine tag that remains on ubiquitylated lysine

residues after trypsin digestion of proteins into peptides and

enriches them �1,000-fold from lysates.

To identify ubiquitylation sites that are specifically CRL

dependent, we utilized a quantitative approach based on

SILAC-MS that we refer to as quantitative ubiquitylation interro-

gation (QUAINT). Light cells were treated with MG132 alone and

heavy with MG132 and MLN4924 (Figure 2A). MG132 was

included to capture ubiquitylated substrates that would other-

wise be degraded by the proteasome. The 4 hr incubation in

MLN4924 did not affect the HeLa cell cycle (Figure S2B). Three

independent replicates identified 9,957 unique peptides, corre-

sponding to 2,814 proteins, at a false discovery rate of 0.11%

(Figure 2B and Table S3). Internal validation of peptide identifica-

tion was provided by the fact that 5,114 (>50%) peptides over-

lapped between at least two experiments (Figure 2B). Because

MLN4924 leads to CRL inactivation, it reduces the heavy/light

ratio (H/L) for peptides that contain lysines ubiquitylated by a

CRL. Overall, 1,015 unique peptides were quantitatively reduced

more than 2-fold in at least one replicate (Figure 2C).

The H/L average and standard deviation for all 5,114 unique

peptides appearing in multiple replicates was calculated. We

selected 364 peptides displaying an average H/L reduction of

2-fold between multiple replicates and added 448 peptides

that were reduced more than 2-fold yet quantified in only one

replicate. This corresponds to 812 peptides (from 410 proteins),

which we designate as our QUAINT-MLN4924-regulated CRL

candidates (Table S3). Importantly, the individual values con-
462 Cell 147, 459–474, October 14, 2011 ª2011 Elsevier Inc.
tributing to the mean H/L ratios were very similar across repli-

cates, as 77% of the 364 peptides were reduced R 2-fold and

94% trended (reduced R 1.5-fold) in a second replicate. This

yielded many known substrates, including SETD8, NF-kB, cyclin

D, CDT1, HIF1A, POLR2A, YBX1, CDC25A, ORC1, b-catenin,

and many CRL adaptors. The enrichment for known substrates

and the overlap between replicates suggests that QUAINT pro-

teomics has identified a large number of CRL substrates with

a high degree of confidence.

We compared the overlap between the QUAINT and GPS

MLN4924 screens. Of these top 410 QUAINT scoring proteins,

295 (72%) are present in the human ORFeome collection and

108 (37%) had a shifted probe distribution in the MLN4924

GPS screen (p < 10�50). This suggests that at least 37% of the

QUAINT-regulated proteins represent bona fide CRL-regulated

proteins. Fusion to GFP and a very high initial stability (pre-

MLN4924) can preclude the identification of some substrates

in GPS, suggesting that this is likely to be an underestimate.

The 108 proteins that overlapped in both screens are depicted

in Figure 2D. Known substrates, substrate adaptors, proteins

with known interactions with CRLs, those validated by endoge-

nous immunoblot, and proteins that scored in other GPS screens

for CRL substrates (see below) are colored. Strikingly, these

account for 63 (58%) of the proteins on theQUAINT-GPS overlap

list, suggesting that our complementary approaches identified

a high confidence list of both known and previously unrealized

CRL substrates.

CRL4 GPS Screen
The successful identification of CRL substrates prompted us to

interrogate specific ligases with GPS. Following DNA damage,

CRL4 causes the rapid degradation of p21CIP1 (CDKN1A),

CDT1, and SETD8/SET8 (reviewed in Abbas and Dutta, 2011).

The substrate specificity factors for CRL4, termed DCAFs

(DDB1 and Cul4-associated factors), contain a WDxR motif.

We coexpressed dominant-negative Cul4A and Cul4B (DN-

Cul4) to disrupt CRL4 and found that it prevented the destabili-

zation of CDT1 following treatment with UV light or the UV

mimetic 4NQO, confirming its inhibition (Figure 3A). We also

generated a GPS-p21CIP1-expressing cell line (CDT1 fusion to

EGFP prevents its recognition by CRL4). GPS- p21CIP1 is desta-

bilized following UV, and this is blocked by DN-Cul4 (Figure 3B).

Conditions were optimized for the maximum duration of

DN-Cul4 treatment that would not affect the overall stability of

the library. A 293T-GPS library was treated with DN-Cul4 or a

control empty vector-expressing virus for 20 hr, and both condi-

tions were treated with 4NQO for 2 hr prior to FACS, as the

degradation of some CRL4 substrates is triggered by DNA

damage. The PSI for probes in DN-Cul4 and control conditions

showed a linear relationship (R2 = 0.91; Figure S4B), suggesting

that the screen data are of high quality. After DPSI ranking

and inspecting probe graphs, we identified 279 high-priority

candidates and successfully validated 113 by individually

retesting (37%) using FACS. Twenty of these validated candi-

dates were assayed for stabilization by immunoblot of EGFP-

tagged proteins after DN-Cul4, and all were validated (Table

S4). Importantly, reanalysis of the MLN4924-GPS screen graphs

for each of the 279 candidates revealed that substrates shifting
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Figure 2. Mass Spectrometry Identification of CRL Substrates Using QUAINT

(A) Schematic representation of the QUAINT experimental design to identify CRL-regulated proteins.

(B) Overlap between peptides identified in three QUAINT replicates.

(C) Overlap between MLN4924-regulated peptides in the three QUAINT replicates.

(D) Graphic depiction of the overlap between theMLN4924 GPS andQUAINT screens. (Green) Known substrate adaptors; (blue) known substrates; (red) proteins

with known interactions with CRL ligase components; (purple) proteins that were identified in additional DN-Cul GPS screens; (orange) proteins validated in this

study by endogenous immunoblot.

See also Figures S2, S3, and S6 and Tables S3 and S7.
in both CRL4 and MLN4924 GPS screens validated at a rate of

72% (Figure 3E and Table S4), suggesting that cross-referencing

overlapping screens can reduce the false-positive rate of GPS.

A subset of validated CRL4 candidate substrates is shown in

Figure 3C. High-confidence hits scoring in both the MLN4924

and CRL4 GPS screens and validated when re-examined by

flow cytometry are depicted in Figure 3E.

To assess cell type specificity, we tested a subset of validated

proteins by FACS in additional lines (HeLa and U2OS). Ferritin is

the primary iron uptake and storage protein in cells, and its

dysfunction has been associated with neurodegenerative dis-
ease. Ferritin heavy chain (FTH1) scored in both the MLN4924

and CRL4 GPS screens and was validated in 293T and HeLa

cells (Figures 3C and S4C). FUT11 is a cytoplasmic fucosyl-

transferase enzyme that scored in the CRL4 and MLN4924

GPS screens and was validated in 293T, HeLa, and U2OS

cells (Figures 3C and S4C). All 10 proteins tested in HeLa and

U2OS cells (FUT11, FTH1, KIAA0101/PAF15, TM2D1, ITM2A,

KIAA1680, LDHB, MAPK6, FAM53A, and MCM7) validated in

at least one of those cell types.

Several solute carriers scored in both the MLN4924 and

CRL4 GPS screens, including SLC38A2, SLC29A2, SLC17A3,
Cell 147, 459–474, October 14, 2011 ª2011 Elsevier Inc. 463
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Figure 3. GPS Screen to Identify CRL4 Substrates

(A) 293T cells expressing either FLAG-DN-Cul4 or an empty vector control were treated with UV or 4NQO to induce DNA damage. Vinculin was blotted as

a loading control. DN-Cul4 was detected using Flag antibodies.

(B) 293T cells expressing GPS-CDKN1A were treated with UV light in the presence and absence of DN-Cul4.

(C) A subset of validated candidate substrates that were tested in 293T cells using flow cytometry.

(D) Functional category and protein family enrichment analysis for the proteins validating in the CRL4 GPS screen.

(E) The overlap between CRL4 and MLN4924 GPS screens.

See also Figures S4 and S6 and Tables S4 and S7.
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and SLC39A13. SLC38A2 is a sodium-dependent amino acid

transporter, and SLC29A2 is a nucleotide transporter. In addi-

tion, lactate dehydrogenase b (LDHB), which catalyzes the inter-

conversion of lactate and pyruvate, and NAD and NADH in

the glycolytic pathway scored in the CRL4 screen and the

QUAINT MLN4924 screen and validated in 293T and HeLa cells

(Figures 3C and S4C). Taken together, this suggests a role for

CRL4 in regulating various aspects of metabolism and cellular

homeostasis.

Numerous nuclear proteins, particularly transcriptional regula-

tors, scored in the CRL4 screen. CCNH-encoding cyclin H, a

component of both the CDK-activating kinase (CAK) and the

regulator of RNA Pol II (TFIH), scored in both the CRL4 and

MLN4924 GPS screens and validated by endogenous immuno-

blotting after MLN4924 treatment. FAM53A is a nuclear protein

involved in dorsal neural tube development, whichwas stabilized

in the CRL4 and FAM53A GPS screens and validated with DN-

Cul4 (Figures 3C and S4C) (Jun et al., 2002). ETS2, which scored

in the CRL4 and MLN4924 GPS screens and validated with DN-

Cul4, is a winged helix-turn-helix transcription factor that is

involved in telomere maintenance through hTERT transcriptional

regulation and in maintenance of trophoblast and colonic stem

cells (Figure 3C) (Múnera et al., 2011; Wen et al., 2007; Xu

et al., 2008). HDAC3 interacts with SMRT and N-CoR in a nuclear

corepressor complex and scored and validated in both DN-Cul4

andMLN4924 screens (Figure 3C) (Karagianni andWong, 2007).

Endogenous HDAC3was also validated by cycloheximide chase

following treatment with DN-Cul4 (Figure S4D). INTS3 and INTS4

are components of the integrator complex, which binds to the

C-terminal domain of RNA polymerase to aid in processing of

small nuclear RNAs. INTS3 and INTS4 scored in the MLN4924

and CRL4 GPS screens, and INTS3 validated by FACS in 293T

cells (Table S4). Together, this strongly argues that CRL4 plays

an important role in regulating a variety of transcription factors.

The MCM2-7 helicase complex unwinds DNA ahead of the

replicative DNA polymerase. MCM2, MCM5, and MCM7 scored

in the DN-Cul4 GPS screen, and MCM2, MCM3, MCM5, and

MCM7 scored in the MLN4924 GPS (Figure S4E). All compo-

nents showed regulated ubiquitylation in the QUAINT analysis

andwere validated by DN-Cul4 in 293T cells (Figure 4F and Table

S4). GPS-MCM7 also validated in HeLa cells following DN-Cul4

treatment (Figure S4E). Though very little is known about poten-

tial MCMcomplex ubiquitylation, an increase in ubiquitin-depen-

dent turnover of MCM3 in G1 phase has been observed (Cheng

et al., 2002).

CRL3 GPS Screen
CRL3KEAP1 constitutively degrades the oxidative stress re-

sponse transcription factor Nrf2 (Cullinan et al., 2004; Kobayashi

et al., 2004). Following oxidative damage, Keap1 is inhibited,

allowing NRF2 to rapidly accumulate and initiate transcription.

CRL3 utilizes Kelch-BTB proteins (Bric-a-Bric, Tamtrack, and

Broad) as substrate specificity factors (Xu et al., 2003). To

confirm that DN-Cul3 inhibited CRL3, we immunoblotted treated

cells for NRF2 (Figure 4A). GPS-NRF2 was stabilized following

DN-Cul3 treatment to the same extent as strong oxidative stress

induced by TBHQ treatment (tert-Butylhydroquinone; Figures 4C

and 4D).
Comparing the PSI for probes from DN-Cul3-treated and

control-treated samples revealed an R2 value of 0.91. The screen

identified the well-characterized substrates NRF2, DAPK1, and

DVL1. After ranking probes and inspecting graphs, we identified

188 high-priority candidate substrates (Table S5). We cross-

referenced the high-priority CRL3 candidates against the probe

graphs for the MLN4924-GPS screen and identified 88 proteins

that overlap in both screens, which we predict will validate at

a high rate (70%–80% based on the results of our SCF and

CRL4 screens; Figure 4F and Table S5). This list is enriched for

proteins containing the BTB-Kelch fold found in CRL3 specificity

factors (Figure 4G). Based on our analysis and validation of

the CRL4 and SCF (below) screens and the identification

of numerous substrate specificity factors as well as known

substrates, we predict that this overlapping list contains many

CRL3 substrates.

SCF GPS Screen
We previously applied the first-generation GPS system to the

identification of SCF substrates utilizing DN-Cul1 to inhibit ligase

activity (SCF-GPS.1) (Yen and Elledge, 2008). We used the

second-generation GPS library, with conditions optimized from

our first screen, to identify additional substrates (SCF-GPS.2).

The 293T-GPS library was treated with either a lentivirus ex-

pressing DN-Cul1 or empty vector. Comparison of the PSI for

all probes between the two conditions yielded an R2 value of

0.95. Validation was performed by individually retesting ORFs

under the conditions of the screen and yielded a validation rate

of �59% (80 out of 139 high-priority candidates tested; Table

S6). This was an improvement over SCF-GPS.1, which had

a 47% validation rate. In addition, all of the SCF-GPS.1-validated

proteins that were individually tested in the second-generation

lentiviral pGPS-LP vector recapitulated stabilization in response

to DN-Cul1. Performing this screen with the updated pGPS-LP

library validated 67 additional putative SCF substrates not

recovered in our original screen (Table S6), such as TRIM9,

BZW1, ZNF238, HFM1, MICALL2, and SH3BP5L. TRIM9 inter-

acts with the F box protein b-TRCP by yeast two-hybrid (Rual

et al., 2005) and contains the b-TRCP degron sequence

(DSGxxS), strongly suggesting that it is controlled by SCFb-TRCP.

Validated proteins that overlap between the MLN4924 and

SCF GPS screens are shown in Figure 5B. Proteins scoring in

both SCF and MLN4924 screens validated at a rate of �81%

(Table S6). Because the identification of a protein in multiple

screens is a strong predicator of its likelihood to validate, we

have generated a summary table of 472 proteins that either indi-

vidually validated in GPS or scored in one GPS and a second

GPS or QUAINT screen (Table S7).

Identifying Specific E3 Ligases: NUSAP1 Is a Substrate
of SCFCyclin F

Because phosphorylation can drive proteolysis, we cross-refer-

enced our overlap lists with phosphoproteomic cell-cycle and

DNA damage screens (Dephoure et al., 2008; Matsuoka et al.,

2007) and identified NUSAP1, which shows regulated phosphor-

ylation in mitosis and in response to DNA damage. NUSAP1 is

a cell-cycle-regulated microtubule-binding protein with roles in

chromosome congression and segregation (Raemaekers et al.,
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Figure 4. GPS Screen to Identify CRL3 Substrates

(A) 293T cells treated with empty vector or DN-Cul3 were immunoblotted for NRF2 and Ran (loading control).

(B) 293T cells expressing GPS-CDKN1A (negative control), GPS-NRF2, or the GPS library were treated with DN-Cul3 for 18 hr and analyzed by flow cytometry.

(C) GPS-NRF2 cells were treated with DMSO or the oxidizing agent TBHQ for 4 hr.

(D) 293T cells expressing GPS-NRF2 were treated with DN-Cul3 for increasing amounts of time and were analyzed by flow cytometry.

(E) Shown is a subset of validated candidate substrates that were tested in 293T cells using flow cytometry.

(F) The overlap between CRL3 and MLN4924 GPS screens.

(G) Functional category and protein family enrichment analysis for protein overlap between the CRL3 and MLN4924 GPS screens.

See also Tables S5 and S7.
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Figure 5. GPS Screen to Identify SCF Substrates

(A) Functional category and protein family enrichment analysis for the proteins that validated in the CRL4 GPS screen.

(B) The overlap between CRL4 and MLN4924 GPS screens.

(C) A subnetwork demonstrating the high degree of betweenness for proteins regulated by the SCF. SCF candidate substrates are shown in cyan, and circle size

corresponds to the degree of connectivity within the network.

See also Figure S6 and Tables S6 and S7.
2003; Ribbeck et al., 2006, 2007). To identify the specific ligase

controlling NUSAP1, we treated cells with MLN4924 or DN-Cul.

MLN4924 confirmed the CRL dependency (Figure 6A), and only

DN-Cul1 produced a significant increase in NUSAP1 levels (Fig-

ure 6B). To identify the F box protein for NUSAP1, we performed
an siRNA screen of all 69 known F box proteins. U2OS cells were

transfected with siRNA pools targeting each of the different F

box proteins, and 72 hr posttransfection, cells were harvested

and immunoblotted for NUSAP1. We found that depletion of

cyclin F, the founding member of the F box family, increased
Cell 147, 459–474, October 14, 2011 ª2011 Elsevier Inc. 467
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the levels of NUSAP1 (Figure 6C). To date, CEP110 is the only

knownSCFCyclin F substrate (D’Angiolella et al., 2010). To confirm

specificity, we tested four independent cyclin F siRNAs and

found cyclin F depletion inversely correlated with NUSAP1 levels

(Figure S5A). To test whether this regulation was posttransla-

tional, cyclin F was depleted from 293T cells expressing GPS-

NUSAP1 or GPS-MDH1 (negative control). Cyclin F depletion

caused an increase in the EGFP/DsRed ratio of GPS-NUSAP1

cells (Figure 6D), reflecting an increase in EGFP-NUSAP1

stability relative to the siRNA control (siFF).

Because SCFCyclin F ligase activity is cell cycle regulated, we

examined NUSAP1 proteins levels throughout the cell cycle.

NUSAP1 accumulated during S and G2 phase following release

from synchronization at the G1/S boundary and was destroyed

at the end of mitosis. Its destruction in late mitosis and G1 is

similar to that of PAF15 and cyclin B (Figure 6E). This was ex-

pected because NUSAP1 has been reported to be an APC/C

substrate (Song and Rape, 2010), similar to PAF15 and cyclin

B (Emanuele et al., 2011; King et al., 1995).

Following release from a double thymidine block, cyclin B and

PAF15 levels were relatively high, increasing �20% between

the time of release and their maximal level achieved in mitosis.

NUSAP1 levels were low throughout S and abruptly increased

in G2 (Figure 6E, graph). We asked whether cyclin F controlled

NUSAP1 during S and G2. U2OS and HeLa cells treated with

cyclin F siRNA were synchronized at the G1/S boundary and

released into the cell cycle. Cyclin F depletion increased the

levels of NUSAP1 during S and G2 phase following only 24 hr

of siRNA depletion (Figures 6F and S5B). Importantly, cyclin F

depletion does not affect cell-cycle timing following release

(Figures 6C and S5B). To confirm that cyclin F and NUSAP1

interact, Flag-cyclin F was immunoprecipitated from HeLa cells.

Immunoblotting of the precipitates showed that full-length cyclin

F, but not a truncation lacking the cyclin box (cyclin F 1–270),

precipitated endogenous NUSAP1 (Figure 6G). We conclude

that SCFCyclin F targets NUSAP1 for degradation during S and

G2 phases of the cell cycle.

NUSAP1 Is Degraded in Response to UV Irradiation
NUSAP1 is phosphorylated on S124 by the ATM/ATR kinases

following DNA damage (Matsuoka et al., 2007; Xie et al.,
Figure 6. NUSAP1 Is an SCFCyclin F Substrate

(A) 293T cells were treated with MLN4924 for 2, 4, and 8 hr and immunoblotted

(B) U2OS cells expressing the indicated DN-Cul were immunoblotted for NUSAP

(C) U2OS cells were transfected with siRNA targeting firefly luciferase (siFF) or the

NUSAP1, cyclin B, and Vinculin (loading control). This experiment was performed

Here, we show a lighter exposure of the untreated portion of the NUSAP1 immun

depletion of cyclin F.

(D) 293T cells expressing GPS-NUSAP1 were treated with siFF or siCyclin F for

(E) HeLa cells were synchronized using a double thymidine block and released.

pH3S10, PAF15, and the first Vinculin blot (top four panels) were probed from the s

panels) were probed on a second membrane. A semiquantitative analysis of NUS

from the western blot shown, is graphed. (The extracts analyzed here are identic

(F) U2OS cells were synchronized using a double thymidine block and release. A

siFF. Following release, cells were analyzed by immunoblot with the indicated

A semiquantitative analysis of NUSAP1 protein levels (relative to loading controls

(G) Flag-tagged cyclin F or cyclin F (1–270) was transfected into HeLa cells for 24 h

anti-Flag agarose. The precipitates were immunoblotted for NUSAP1.

See also Figure S5.
2011). Based on this information, we examined NUSAP1

protein levels following DNA damage with ultraviolet light

(UV), the UV mimetic 4NQO, and ionizing radiation (IR). We

found that UV and 4NQO, but not IR, caused NUSAP1 degrada-

tion in U2OS, HeLa, and 293T cells (Figures 7A, S5C, and S5D).

Degradation was observed at 1 hr following UV treatment and

with as little as 10 J/m2 UV. Importantly, cells treated with

MG132 or MLN4924 could not effectively degrade NUSAP1,

demonstrating both proteasome and CRL dependence (Fig-

ure 7B). To map the ligase responsible for NUSAP1 degrada-

tion, we employed a panel of dominant negatives targeting

each of the cullins. We found that SCF inhibition prevented

NUSAP1 degradation (Figure 7C). However, depletion of cyclin

F had no effect on the UV-induced NUSAP1 degradation, indi-

cating that it is likely to be a substrate of two distinct SCF

ligases (Figure 7D).

NUSAP1 Maintains Resistance to Antitubulin
Therapeutics
Nusap1 resides on chromosome 15q15.1, a region frequently

deleted in a wide variety of cancers. The role of NUSAP1 in

regulating microtubules prompted us to examine the potential

sensitivity of NUSAP1-depleted cells to antitubulin chemothera-

peutics. We found that depletion of NUSAP1 with three indepen-

dent siRNA made both U2OS and HCT116 cells highly sensitive

to treatment with the antitubulin cancer therapeutic taxol relative

to siFF-treated controls (Figures 7E and S5G) without perturbing

the cell-cycle distribution (Figures S5E and S5F). This phenotype

was rescued by reintroduction of a NUSAP1 ORF lacking the

30UTR following depletion with the siRNA targeting the 30UTR
(Figure S5H). We also observed a similar degree of sensitivity

to nocodazole, which disrupts the microtubule cytoskeleton

through an alternative mechanism, in U2OS and HCT116 cells

(Figures 7E and S5G). This suggests that the presence of

NUSAP1 makes cells more resistant to the toxic effects of anti-

tubulin chemotherapeutics and might predict taxol sensitivity in

tumors deleted for NUSAP1.

CRLs Have Nonoverlapping Functions
Functional categorization and domain analysis of proteins identi-

fied by QUAINT and GPS are shown in Tables S1 and S2 and
with antibodies to endogenous NUSAP1.

1.

F box proteins Fbxw7 and cyclin F, incubated for 48 hr, and immunoblotted for

with and without UV treatment, and the full experiment is shown in Figure 7D.

oblot relative to 7D to better illustrate the increase in NUSAP1 following siRNA

48 hr and analyzed by flow cytometry.

Lysates were collected at the indicated times and immunoblotted. NUSAP1,

ame immunoblot membrane. Cyclin B and the second Vinculin blot (bottom two

AP1, cyclin B, and PAF15 protein levels (relative to loading controls), derived

al to those utilized in Figure 1C of Emanuele et al., 2011.)

fter the first thymidine block, cells were transfected with siRNAs to cyclin F or

antibodies (asterisk notes a cross-reacting band in the cyclin F immunoblot).

), derived from the western blot shown, is graphed.

r. Cells were treatedwith 5 mMMG132 for 2 hr, harvested, and precipitated with
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Figure 7. NUSAP1 Is Degraded following UV, and Its Loss Sensitizes Cells to Antitubulin Chemotherapeutics

(A) 293T and U2OS cells were treated with UV and collected at 1, 2, and 4 hr for immunoblotting. Alternatively, the same cell lines were treated with either 0.2 or

1.0 mg/ml 4NQO and were harvested at 4 hr. Cells were immunoblotted for NUSAP1 and Vinculin.

(B) U2OS cells were treated with 0, 10, 25, or 50 J/m2 of UV and, following treatment, were incubated inmedia containing DMSO, 5 mMMLN4924, or 5 mMMG132.

Four hours after UV treatment, cells were harvested for immunoblotting.

(C) U2OS cells expressing Dn-Cul1 were treated with UV or 4NQO and harvested after 4 hr for immunoblot.

(D) U2OS cells were transfected with siRNA targeting FF, Fbxw7, or cyclin F and, after 48 hr, were treated with UV and harvested 4 hr later for immunoblot.

(E) U2OS cells were depleted of NUSAP1 using three independent siRNA for 24 hr, at which point cells were treated with taxol or nocodazole for an additional

72 hr. Cell viability was assessed using cell titer glo. Survival of NUSAP1-depleted cells, relative to siFF-treated controls, is reported at each concentration tested.

Each siRNA and drug combination was performed in triplicate, and the graph reports the mean ± the standard deviation.

See also Figure S5.
confirm the role of CRLs in awide swath of cellular processes.We

performed a similar analysis on the validated substrates from

each individual GPS screen. CRL4-regulated proteins were en-

riched for involvement in nuclear, Golgi, and endoplasmic retic-

ulum function, as well as DNAmetabolism, replication, and repair
470 Cell 147, 459–474, October 14, 2011 ª2011 Elsevier Inc.
(Figure 3D). In addition, domain analysis revealed enrichment

for protein kinases, zinc fingers, andWD40 repeat proteins,which

serve as substrate adaptors for CRL4 (Figure 3D). The enrichment

for replication and repair was expected from the known role of

CRL4; however, a role in most other categories has not been



previously established for CRL4. Domain and functional category

analyses for putative CRL3 and SCF substrates are shown in

Figures 4F and 5A, respectively. Domain analyses for putative

CRL3 and SCF substrates revealed a significant enrichment for

their respective adaptors, Kelch-BTB and F box proteins. In

addition, SCF substrates showed the expected enrichment for

proteolysis but an unexpected enrichment for cytoskeleton and

cell projection, suggesting a role for the SCF in cell migration.

Most importantly, the functional analysis for each ligase isdistinct.

This suggests that each CRL evolved in a specialized fashion to

regulate specific aspects of cellular physiology.

CRL Substrates Are Highly Enriched for ‘‘Betweenness’’
We performed an interaction analysis for proteins that validated

for regulation by CRLs in our screens to determine the degree to

which these proteins participated in protein interaction

networks. The network that emerged from this analysis was

analyzed for a property called ‘‘betweenness,’’ which is a statis-

tical measure of a protein’s centrality within an interaction

network. A higher degree of betweenness indicates a greater

degree of interconnectivity within a network. The CRL candidate

list of 472 proteins, which scored in at least two overlapping

screens, was mapped onto the most current BioGRID human

protein-protein interaction network (Table S7). This analysis

demonstrated that CRL-regulated proteins show a high degree

of betweenness (p = 3.96 3 10�15; Figure S6), indicating that

they are highly connected within protein interaction networks.

In addition, proteins scoring with greater than a 2-fold change

by QUAINT (Table S3) and those that overlapped between the

MLN4924 GPS and QUAINT screens (Figure 2D) also showed

a high degree of betweenness (p = 1.1 3 10�22 and 2.08 3

10�9, respectively; Table S7). Graphs demonstrating the in-

creased protein interactions for CRL candidate substrates are

shown in Figure S6D.

Based on these results, we analyzed the individual validation

lists for the SCF, CRL4, and MLN4924 GPS screens. As ex-

pected, the validated substrate lists all showed a statistically

significant degree of betweenness (p = 3.7 3 10�3, p = 3.2 3

10�3, and p = 1.72 3 10�6, respectively; data sets in Table S7).

Network diagrams showing the betweenness centrality of puta-

tive substrates from these screens are depicted in Figure S6. A

subnetwork for SCF is also shown in Figure 5C. Thus, the

proteins regulated by CRL ligases represent central hubs within

networks and pathways. By regulating these critical junctures,

we hypothesize that CRLs could have a maximal impact on

a particular pathway.

DISCUSSION

Regulated ubiquitin-mediated proteolysis through E3 ligases is

a critical aspect of cellular homeostasis. Functionally, E3 ligases

are equivalent to micro-RNAs in the hierarchy of regulated gene

expression. Just as micro-RNAs are sequence-specific adap-

tors that target RNA molecules for destruction to filter the tran-

scriptome, E3 ligases are sequence-specific adaptors that target

proteins for destruction to filter the proteome. Their ability to

reshape the proteome in response to stimuli is of vital impor-

tance to both development and physiological responses to
stimuli in eukaryotes. Thus, it is critically important to identify

the substrates of ubiquitin ligases at a systems level.

Comparison of GPS and QUAINT Technologies
Here, we have applied two emerging techniques, GPS and

QUAINT, to identify ubiquitylation substrates of the CRL family

of E3s. Of the known SCF substrates (Skaar et al., 2009) in the

ORFeome library, �22% were identified by GPS. This is an

underestimate of the potential of GPS for substrate identifica-

tion, as known substrates were identified from a variety of cell

types and we performed GPS analysis in only one. Because

cell lines vary with respect to the constellation of substrate

adaptors and activity of different signaling pathways, complete

overlap is not expected. Of the known SCF substrates, QUAINT

identified 14%, which is also an underestimate.

QUAINT and GPS have different strengths. GPS measures

protein abundance and directly interrogates changes in protein

stability independent of their endogenous abundance or expres-

sion in a specific cell type. Despite these strengths, GPS suffers

from a reliance on an N-terminal GFP fusion, which can affect

protein localization and degron activity in certain cases. We

are in the process of reconstructing libraries with alternative

N- and C-terminal tags to circumvent some of these issues. In

addition, expression levels can affect our ability to detect

substrates, evidenced by the fact that some of the validated

SCF substrates from first-generation screens did not rescore in

the current screen. GPS currently relies on ORFeome collections

that are not sequence verified and contain truncated and mutant

proteins. Advances in ORFeome collections and the assembly of

a nonredundant, sequenced verified ORFeome collection will

enhance the GPS system.

The strength of QUAINT is its quantitative nature and ability

to recognize endogenous proteins. It is also able to identify ubiq-

uitylation events, such as monoubiquitylation, that do not result

in protein degradation. Moreover, it identifies ubiquitylation

sites that could provide mechanistic insights and inform sub-

strate mutational analysis. However, QUAINT cannot distinguish

whether the ubiquitin modification reflects a change in the entire

protein population of a substrate or a small fraction, the biolog-

ical significance of which is less certain. Furthermore, QUAINT

cannot distinguish between ubiquitin, ISG15, and Nedd8 modifi-

cation because all three modifiers leave a GG-lysine after trypsin

proteolysis. In addition, it is possible that ubiquitylated proteins

that change transcriptionally in response to stimuli, such as

MLN4924, may appear to have altered ubiquitylation that does

not reflect a change in ligase activity. QUAINT cannot distinguish

between monoubiquitylation and polyubiquitylation, only the

latter of which could affect protein stability. Finally, QUAINT is

biased toward more abundant substrates.

Both GPS and QUAINT strategies identified known CRL

substrates missed by the other. For example, QUAINT identified

b-catenin and CDT1, which are missed by GPS—b-catenin

because it is not encoded by the current ORFeome collection

and CDT1 because conjugation with GFP interferes with its

degron. Conversely, the GPS-MLN4924 screen identified a

number of well-characterized substrates missed by our proteo-

mic efforts, including but not limited to NRF2, DVL1, PDCD4,

CDKN1A, CDKN1B, FBXO5/EMI1, and MCL1. With ongoing
Cell 147, 459–474, October 14, 2011 ª2011 Elsevier Inc. 471



ORFeome development and C-terminal tagging strategies, we

expect the GPS system to continue to improve. Importantly,

the combination of these emerging techniques has given us a

very deep snapshot of the regulated protein stability and modifi-

cation landscapes that will only improve in the future.

NUSAP1 Is an SCF Substrate
As a proof of principle, using layered genetic screens, we have

identified the precise ligase for one CRL-regulated protein. We

discovered that NUSAP1 is a substrate of SCFCyclin F. NUSAP1

and cyclin F interact with one another, and cyclin F depletion

specifically affects the stability of NUSAP1. Cyclin F has only one

other known substrate, CEP110 (D’Angiolella et al., 2010).

CEP110 localizes to centrosomes and regulates their duplication

cycle (Ou et al., 2002). CEP110, like NUSAP1, is involved in

regulating the microtubule cytoskeleton. Because CEP110 and

NUSAP1 depletion cause chromosome segregation defects, this

suggests that the upstream regulation of these two factors by cy-

clinF is essential formaintaining chromosomestability.NUSAP1 is

also destabilized upon treatments that activate the ATR/ATRIP

pathway. Importantly, this destabilization is Cul1 dependent but

cyclin F independent. Because NUSAP1 is also an APC/C sub-

strate, it is likely to be regulated by multiple cullin-based E3 ubiq-

uitin ligases: APC/C, SCFCyclin F, and a third SCF-based ligase.

Nusap1 is located in a focal deletion region for many tumor

subtypes, and as we found that cells depleted for NUSAP1

were sensitive to taxol, tumors with reduced NUSAP1 might be

responsive to taxol. Further, if the degradation of NUSAP1 in

response to chemotherapeutic agents that crosslink DNA is a

general finding, then tumor cells containing NUSAP1 but lacking

a functional G2/M checkpoint might be especially sensitive to a

combination therapy consisting of the proper class of DNA

damaging agent and taxol. These findings may have important

implications for cancer therapies based on neddylation inhibition.

Functional Divergence and Betweenness
Functional category enrichment analysis for individual CRLs

showed that each ligase evolved in a specialized manner to

control distinct physiological pathways. Moreover, we find the

CRL substrate list is strongly enriched for a property known as

betweenness, being highly enriched as hubs within interaction

maps. Thus, they are much more highly connected than the

average protein in the database (akin to the highly connected

individual in a social network). Highly connected nodes are

positioned to control the flow of information across a network,

and their removal will have the highest impact across the

network due to their inherent connectivity. In yeast, highly con-

nected proteins are three times more likely to be essential than

their non-node counterparts (Jeong et al., 2001; Jonsson and

Bates, 2006). We have reanalyzed the yeast data with the

more complete interaction network in BIOGRID and have found

that our set of CRL substrates is as highly enriched for between-

ness as the set of essential genes in S. cerevisiae (Figure S6D).

The biological interpretation of our observation that CRL sub-

strates represent nodes is that cells have evolved mechanisms

to regulate the abundance of the most essential components of

networks. Because signal transduction pathways control regu-

lated ubiquitylation by CRLs, these pathways turn on or off key
472 Cell 147, 459–474, October 14, 2011 ª2011 Elsevier Inc.
nodes to maximally impact cellular physiology. Together, these

observations indicate that the CRL substrates that we have

identified represent a collection of key regulatory proteins. We

predict that these proteins are highly enriched for indicators of

the physiological state of the cell. This study, together with antic-

ipated future studies, will allow us to gain a systems-level under-

standing of the dynamics of protein stability in the proteome.

EXPERIMENTAL PROCEDURES

Tissue Culture, Reagents, and Procedures

A complete description of experimental procedures is available in the

Extended Experimental Procedures.

Cells were transfected with plasmids using TransIT transfection reagent

(Mirus). Retroviruses and lentiviruses were packaged in 293T cells using

standard techniques. Cells were transfected with siRNA oligonucleotides

using RNAiMAX (Invitrogen).

Flag IPs were performed on lysates from a single 10 cm plate of HeLa

cells 24 hr after transfection and 3 hr after treatment with 5 mM MG132. Cells

were lysed in NETN buffer-containing protease and phosphatase inhibitors.

Clarified, combined nuclear and cytoplasmic lysates were precipitated with

Flag-M2 agarose beads for 3 hr at 4�C. Beads with immune complexes

were washed four times and boiled in SDS-PAGE sample buffer.

Cell viability was measured using Cell Titer Glo Reagent (Promega) accord-

ingmanufacturer’s protocols. For viability assays following NUSAP1 depletion,

cells were treated with siRNA for 16–18 hr before replating in 24-well plates.

Four hours after replating, media was supplemented with taxol or nocodazole

and viability was assayed 72 hr later. All experiments were performed in

triplicate, and data reported are a mean.

GPS Screening and Scoring

GPS screens were performed essentially as described (Yen and Elledge,

2008). For the MLN4924 screen, cells were treated for 4 hr with 1 mM drug.

For the SCF, CRL3, and CRL4 screens, cells were treated with lentivirus-

expressing DN-Cul1, DN-Cul3, and DN-Cul4A and DN-Cul4B. Control cells

were treated with an empty vector-expressing lentivirus or DMSO. A viral titer

of greater than 10 was used for all of the CRL screens.

Microarray probe data was filtered and normalized, and for each probe, a

DPSI value was calculated and a graph was drawn comparing the probe

distribution across bins for treated and untreated samples (example in Fig-

ure 1Av). Graphs were rank ordered based on DPSI and were visually in-

spected one at a time to assess the significance of the probe shift for all graphs

with a DPSI greater than 0.25.

QUAINT SILAC Peptide IP

HeLa cells were grown in DMEM containing heavy or light arginine and lysine,

as described (Matsuoka et al., 2007). Cells were treated with 5 mM MG132

(Boston Biochem) and/or 10 mM MLN4924. Cells were harvested and lysed

in denaturing buffer. Heavy and light lysates were mixed in a 1:1 ratio, and

proteins were digested with trypsin, followed by desalting on a Sep-Pak C18

column (Waters). Peptides were dissolved in IP buffer (50 mM MOPS buffer

[pH 7.2], 10 mM sodium phosphate, and 50 mM NaCl) and incubated with

PTMScan Ubiquitin Remnant Antibody Beads (Cell Signaling Technology,

Inc.). Beads were washed with IP buffer followed by water, and enriched

ubiquitylated peptides were eluted with 0.15% TFA, followed by LC-MS/MS

analysis using an LTQ Orbitrap Velos.

Bioinformatic Analysis

Protein interactions in Figure 2C were identified using BioGRID, except for

SOD1, which has a genetic interaction with Cul1. We used Pfam 25.0 (http://

pfam.sanger.ac.uk/) to analyze protein domains. We used DAVID 6.7 to test

the gene functions of all lists and used genes in theORFeome library as a back-

ground for gene annotation enrichment analysis (Huang et al., 2009).

To determine protein-protein interactions, we used online database

BioGRID 3.1.77 (Stark et al., 2011). The interactions are displayed as

http://pfam.sanger.ac.uk/
http://pfam.sanger.ac.uk/


a graphical network using the open-source software Cytoscape 2.8.1 (Smoot

et al., 2011). The betweenness centrality of each gene is a number between

0 and 1. The betweenness Gene A is computed as follows: if all connections

pass through the Gene A, betweenness value of Gene A is 1; if Gene A is

a terminal node in the network, the value is 0. We used the sign test to see

whether the genes in a list have a higher betweenness value or not. Each

network’s median is calculated in a sorted list of betweenness values, and

the gene list will be separated into two parts: (1) less than or equal to median

and (2) greater than median sets. Binomial distribution is used with a sign test

to determine the p value.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,

six figures, and seven tables and can be found with this article online at

doi:10.1016/j.cell.2011.09.019.
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