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Altered assemblypathsmitigate interference
among paralogous complexes

Chi-Wei Yeh1, Kuan-Lun Hsu 1, Shu-Ting Lin1, Wei-Chieh Huang1, Kun-Hai Yeh1,
Chien-Fu Jeff Liu1, Li-Chin Wang1,2, Ting-Ting Li1, Shu-Chuan Chen1,
Chen-Hsin Yu 1, Jun-Yi Leu1,2, Chen-Hsiang Yeang2,3 & Hsueh-Chi S. Yen 1,2

Protein complexes are fundamental to all cellular processes, so understanding
their evolutionary history and assembly processes is important. Gene dupli-
cation followed by divergence is considered a primary mechanism for diver-
sifying protein complexes. Nonetheless, to what extent assembly of present-
day paralogous complexes has been constrained by their long evolutionary
pathways and how cross-complex interference is avoided remain unanswered
questions. Subunits of protein complexes are often stabilized upon complex
formation, whereas unincorporated subunits are degraded. How such coop-
erative stability influences protein complex assembly also remains unclear.
Here, we demonstrate that subcomplexes determined by cooperative stabili-
zation interactions serve as building blocks for protein complex assembly. We
further develop a protein stability-guided method to compare the assembly
processes of paralogous complexes in cellulo. Our findings support that oli-
gomeric state and the structural organization of paralogous complexes can be
maintained even if their assembly processes are rearranged. Our results indi-
cate that divergent assembly processes by paralogous complexes not only
enable the complexes to evolve new functions, but also reinforce their seg-
regation by establishing incompatibility against deleterious hybrid assemblies.

Most proteins do not act as isolated entities. Instead, they associate
with other proteins to form stable protein complexes to fulfill their
functions. Many eukaryotic heteromeric protein complexes are com-
posed of paralogous proteins or exhibit striking one-to-one homology
to subunits of other complexes, indicating that gene duplication fol-
lowed by divergence is a common mechanism by which protein
complexes diversify and evolve new roles1,2.

Evolutionarily related homologous protein complexes may arise
upon partial or complete duplication of components in the ancestral
complexes. Partial duplication results in concurrent complexes that
share both identical components and homologous components arising
from gene duplication. Duplication of all subunits in a complex, fol-
lowed by independent evolution, gives rise to parallel complexes
with similar but no shared components3,4. After a gene duplication

event, one copy may acquire a different function (neo-functionaliza-
tion), or the two paralogs partition the ancestral function among them
(subfunctionalization)5. Extensive step-wise partial duplications within
and across complexes and subsequent sequence divergence over a long
evolutionary history can result in paralogous protein complexes dis-
playing sub-orneo-functionalities. Examplesof suchparalogousprotein
families include the farnesyltransferase and geranylgeranyltransferase
complexes, the clathrin adapter protein complexes, the SWI/SNF com-
plexes, the PCI complexes, and the snRNP LSm/Sm complexes.

Adopting this duplication-diversification mechanism has con-
siderable advantages over de novo protein complex formation. For
instance, the evolutionary diversification of LSm/Sm heteromeric
complexes in eukaryotes showcases a general increase in RNA-
processing complexity among eukaryotes6,7. The inherent similarity
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among paralogous complexes also provides stronger connectivity
among their cellular functions that may facilitate their coordinated
regulation. Nevertheless, such pronounced similarity among complex
subunits also imposes a challenge for the specificity/fidelity of their
assembly processes and increases the tendency of cross-complex
interactions. Towhat extent such paralogous interference impacts the
assembly of similar protein complexes and whether mechanisms exist
to prevent potential harmful crosstalk have not been intensively
investigated. Moreover, it remains unexplored if the inter-subunit
interactions and assembly processes of duplicated complexes are
preserved or remodeled to adapt to new functions.

Understanding how protein complexes are formed in cellulo is
fundamental, yet our current knowledge has mostly been obtained
from in vitro studies8–10. Multiple cellular factors are involved in safe-
guarding protein complex formation, such as molecular chaperones
and proteolysis systems, as well as the varied locations within cells
where assembly occurs11–13. Consequently, assembly paths of com-
plexes in vitro may not adequately reflect conditions in cellulo. Rather
than being a randomprocess of subunit coalescence, protein complex
assembly is considered analogous to protein folding, and thus pro-
ceeds via energetically optimal intermediate assemblies14,15. A wide-
spread phenomenon is that subunits of protein complexes are

Fig. 1 | Cooperative stabilization interactions are prevalent among proteins
that form a stable complex. A A schematic depiction of the GPS reporter system.
The fluorescent signal intensities of RFP, GFP, and the GFP/RFP ratio represent
proxies formeasuring the protein synthesis, abundance, and stability, respectively,
of the protein of interest (POI). B GPS analysis of the proteins labeled above the
plots co-expressing the proteins labeled at right. C Cycloheximide (CHX)-chase
analysis ofHUS1 (toppanel) or RAD1 (bottompanel) with/without RAD1 orHUS1 co-
expression, respectively. GAPDH serves as a loading control. Blots are repre-
sentative of three independent experiments. D The synthesis-abundance relation-
ships of HUS1 (top panel) and RAD1 (bottom panel) in response to increasing

dosages of RAD1 and HUS1 co-expression (plot 1 to plot 8), respectively, as mea-
sured by FACS. Each dot represents data from a single cell. Red dashed lines indi-
cate the expected synthesis-abundance relationship when RAD1 and HUS1 form a
heterodimer.EA schematic diagram illustrating the nonlinear synthesis-abundance
correlation of a subunit due to an inadequate supply of stabilizing partners. The
biphasic profile (black line) represents the differential stability of assembled and
free subunits. F GPS analysis of POLR2G and eIF3I with co-expression of indicated
RNA polymerase II and eIF3 subunits, respectively. Source data are provided as a
source data file.
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stabilized upon complex formation, whereas unincorporated subunits
are degraded by proteolysis13,16,17. Such cooperative stabilization, i.e.,
protein stabilization upon associating with relevant partners, is likely
to profoundly influence how protein complex assembly proceeds, but
a systematic characterization of cooperative stabilization networks
within multimeric protein complexes and their relationships with
complex assembly processes is lacking.

Here, we demonstrate that cooperative stability plays a crucial
role in protein complex formation and that the modularity of protein
complex assembly can be inferred by defining cooperative stabiliza-
tion interactions among complex subunits. Moreover, we have devel-
oped a technology based on protein stability-guided connectivity to
deduce the assembly processes of the PCI and LSm/Sm paralogous
complex families, which includes both parallel and concurrent protein
complexes. Our findings reveal limited conservation of ancestral
cooperative stabilization interactions and support that structurally
alike paralogous complexes do not necessarily adopt the same
assembly strategy. The divergent assembly processes of paralogous
complexes not only enable their sub- or neo-functionalization but also
mitigate cross-complex interference.

Results
Cooperative stabilization drives the assembly of protein
complexes
We applied GPS (Global Protein Stability) assay18 to investigate the
impact of cooperative stability on protein complex assembly. The GPS
approach relies on the translationof twofluorescent proteins fromone
mRNA transcript by means of an expression cassette containing a
single promoter and an internal ribosome entry site (IRES) (Fig. 1A).
The green fluorescent protein (GFP) is fused either at the N- or
C-terminus of the protein of interest, whereas the red fluorescent
protein (RFP) serves as an internal control for protein synthesis. Since
RFP and the GFP-fusion protein are translated from a bicistronic
transcript, and RFP is a stable protein not processed by known cellular
protein degradation machineries, the fluorescence intensities of RFP,
GFP, and the GFP/RFP ratio detected by FACS (fluorescence-activated
cell sorting) serve as proxies for measuring protein synthesis rate,
protein abundance, and protein lifespan/stability, respectively, of the
target protein of interest (Supplementary Fig. 1A).

A stable protein complex exhibits a fixed stoichiometry of its
individual subunits. To verify if surplus unassembled complex subunits
are eliminated by proteolysis, we compared the protein lifespans of
individual complex subunits when expressed at different levels using
the GPS reporter driven by the UBC, EF1α and CMV promoters, whose
relative strengths are approximately 1:3:10 in HEK293T cells (Supple-
mentary Fig. 1B). Our study is focused on subunits of stable and obli-
gate protein complexes that perform general housekeeping functions.
Indeed, we observed a negative correlation between protein synthesis
level and protein lifespan for protein complex subunits, but not for
destabilized GFP controls (Supplementary Fig. 1C). Treating cells with
proteasome inhibitors restored the consistent protein lifespan of
protein complex subunits under conditions of protein synthesis var-
iation, indicating that this dosage compensation is proteasome-
dependent (Supplementary Fig. 1D). To determine if elevated proteo-
lysis was attributable to a failure to find appropriate binding partners,
we co-expressed known interacting components in the same complex
and measured their protein lifespans by GPS assays or cycloheximide-
chase analysis (Fig. 1B, C). Our results indicate that reciprocal coop-
erative stabilization interactions are common in diverse obligate pro-
tein complexes. We identified HUS1-RAD1, POLR1C-POLR1D, POLR2D-
POLR2G, POP7-RPP25, LIN9-LIN37, GEMIN6-GEMIN7, SmE-SmF and
PRPF3-PRPF4 asmutual stabilization pairs in the 9-1-1, RNApolymerase
I, RNA polymerase II, ribonuclease P, DREAM/LINC, SMN, Sm and U4/
U6-U5 tri-snRNP complexes, respectively. This stabilization interaction

is occasionally unilateral, as seen for both the TAF6/TAF9 and TAF8/
TAF10 pairs in the TFIID complex (Fig. 1B).

We selected the HUS1-RAD1 complex as a proof of concept to
quantitatively characterize the degree to which protein half-life is
changed when free subunits (i.e. monomeric HUS1 and RAD1) assem-
ble to formheterodimeric complexes. Providing an excess of wild-type
RAD1, but not its mutant defective in HUS1 binding, stabilized HUS1
protein, and vice versa, suggesting that physical binding is crucial for
HUS1-RAD1 co-stabilization (Supplementary Fig. 1E, F). To examine
HUS1-RAD1 interactions quantitatively, we introduced heterogeneous
amounts of wild-type RAD1 using a 2A-BFP (blue fluorescent protein)
construct into the HUS1 GPS dosage library cells that expressed vary-
ing amounts of GFP-HUS1 fusion proteins (Supplementary Fig. 1G). In
this system, millions of single cells, each possessing a unique combi-
nation of HUS1 and RAD1 expression levels, were analyzed together as
a single sample bymeans of three-color FACS. The fluorescence signal
intensities of BFP, RFP, and GFP, as well as the GFP/RFP ratio of each
cell, reflect the RAD1 synthesis level, HUS1 synthesis level, HUS1 pro-
tein abundance, andHUS1 protein stability in that cell, respectively.We
separated cells into eight fractions based on their RAD1 expression
levels (i.e., as represented by BFP fluorescence intensities) and illu-
strated the HUS1 synthesis-abundance correlation of each cell fraction
as serial plots (Supplementary Fig. 1H; Fig. 1D top panel, plots 1–8). Our
results reveal RAD1 dosage-dependent transformation of the
HUS1 state, i.e., from unstable monomer (RAD1 deficient, plot 1) to
stable RAD1-bound dimer (RAD1 surplus, plot 8). By examining each
individual plot (for which amounts of RAD1 supplementation are
fixed), we noted that the HUS1 synthesis-abundance relationship was
clearly biphasic. This nonlinear profile reflects bound and unbound
HUS1 being degraded at different rates. The inflection point between
these two-phase states reflects the amount of synthesized HUS1
beginning to outstrip the amounts of available RAD1 (Fig. 1E). We
performed a reciprocal experiment and detected similar RAD1/
HUS1 synthesis level-dependent RAD1 state transitions (Fig. 1D bottom
panel). We built a mathematical model for protein heterodimer for-
mation and applied our experimental data to estimate the relative
protein degradation rate constants of the RAD1 and HUS1 monomers,
as well as for the RAD1-HUS1 dimer (see “Methods” section). Our
results predicted that the protein lifespans of HUS1 and RAD1 increase
7.94- and 5.04-fold, respectively, when they form a heterodimeric
complex relative to those of their monomeric states. This profound
partner-dependent protein stabilization likely critically influences how
protein complex assembly proceeds, but it has not yet been char-
acterized systematically.

We wondered if cooperative stabilization is a default scenario
between any subunits or if it only arises between particular compo-
nents within a multimeric protein complex. We found that co-
stabilization interactions are highly specific (Fig. 1F). For instance,
POLR2Gwas stabilized only by POLR2D and POLR2M, but not by other
interacting partners in the RNA polymerase II complex. Similarly, eIF3I
was only stabilized by eIF3B and eIF3G. According to the protein
folding theory drawn from Levinthal’s paradox, a protein must fold
through a series of metastable intermediate states14. Analogously,
protein complex assembly is likely to proceed via energetically favor-
able intermediate subcomplexes. We hypothesized that subunits dis-
playing stronger cooperative stabilization tend to form an
intermediate subcomplex prior to further assembling into a larger
complex because their respective monomeric states are labile (Sup-
plementary Fig. 1I). It has been shown previously that large hetero-
meric protein complexes are composed of both non-exponentially
degraded (NED) and exponentially degraded (ED) elements19. The two-
state degradation profile of NED subunits reflects the cooperative
stabilization interactions characterized herein. Consistent with our
hypothesis, NED proteins were shown previously to possess a larger
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Fig. 2 | Inferring the eIF3 assembly process based on cooperative stabilization
interactions. AModel of eIF3 subunit architecture based on dissociation andmass
spectrometry analyses. Subunits of modules I, II, and III are colored blue, magenta,
and green, respectively. Black arrows denote physical interactions not readily
presented in this model. B The eIF3 physical interaction map according to the
available literature. Different detection methods (shown at right) are colored dif-
ferently.C,DCorrelation analyses for results generated from IRES- versus 2A-based
GPS systems, and N- versus C-terminal GFP-tagged eIF3 subunits. Data points
represent fold-changes in protein stability (GFP/RFP ratio). E The eIF3 subunit
stability connectivity map, as measured by the IRES-based GPS system. The matrix
heatmap represents a log2-fold-change in the value of protein stability (GFP/RFP
ratio) for the eIF3 subunit indicated on the left in response to overexpressing the
eIF3 subunit indicated on top. F The synthesis-abundance correlation of the
eIF3 subunit indicated on top with (red) or without (blue) providing the
eIF3 subunit indicated on the plot. G Louvain network modularity analysis of data

shown in (E). Arrows represent stabilization interactions. X→Y indicates that X
stabilizes Y, whereas X↔Y denotes that X and Y mutually stabilize each other. The
thickness of the arrows is proportional to the intensity of protein stabilization.
Subunits in the same network cluster are shown in the same color and surrounded
by a light gray shadow. H The score distribution for all possible binary eIF3
assembly trees. I Correlation analysis between likelihood scores and the presence
of intermediate subcomplexes formed by cooperative stabilization partners
(eIF3D-E, G-I, F-M, K-L). The box plots illustrate the 25th and 75th percentiles, and
the whiskers extend to 1.5 times of the interquartile range (IQR). Horizontal lines
within the box plots represent medians. Outliers are plotted as individual points.
The number of points for each box plot from left to right, are 357,194,157,953,
66,973,726,080, 5,272,663,680, 211,003,200, and 3,752,640, respectively. J DAG
presentation of the top 1000 ranked binary eIF3 assembly trees. The thickness of
lines and the size of circles are proportional to the likelihood. Source data are
provided as a source data file.
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interaction interface and to assemble earlier than their ED
counterparts19.

Deducing eIF3 complex assembly processes based on protein
stability-guided modularity
To examine the role of cooperative stabilization interactions in protein
complex assembly, we characterized the eIF3 (eukaryotic initiation
factor 3) complex, the physical binding pattern and subunit organi-
zation of which have already been established (Fig. 2A, B)8,9,20,21. The
eIF3 complex is the largest translation complex and it belongs to a
member of the paralogous PCI (Proteasome, CSN, eIF3) complex
family21. Human eIF3 consists of 13 non-identical protein subunits,
denoted eIF3A to eIF3M. Tandem mass spectrometry and solution
disruption experiments have revealed that the eIF3 complex is com-
posed of three tightly associated structuralmodules, denoted I [eIF3A/
B/I/G], II [eIF3F/M/H], and III [eIF3K/L/E/D/C], respectively, together
with a labile subunit eIF3J that is attached to the complex via eIF3B
(Fig. 2A)22. eIF3J is substoichiometric and may represent an eIF3-
associated factor rather than being a truly integral eIF3 subunit8,20. Our
results indicate that apart from eIF3J, all other eIF3 subunits exhibit
proteolysis-mediated dosage compensation, with their protein synth-
esis and abundance levels being decoupled through proteasome-
mediated degradation (Supplementary Fig. 2A).

To capture all possible pairwise co-stabilization interactions
within the eIF3 complex, we built GPS reporter cell lines for each eIF3
subunit by integrating their GPS construct as a single copy into the
genome of HEK293T cells. Then, we systematically perturbed the
protein stability network in these reporter cells by individually over-
producing unlabeled eIF3 subunits by means of viral-mediated trans-
duction (multiplicity of infection (MOI) ≈ 5) and assessed any resulting
changes in the lifespan of the examined GFP-tagged eIF3 proteins by
GPS assays. We were unable to examine the eIF3A subunit because the
eIF3A GPS reporter cells were not viable. Human eIF3 has been shown
to interact with IRES and it mediates 5′cap-independent translation23.
To verify the fidelity of the results deduced from our IRES-based GPS
assay, we performed the same experiments using a 2A peptide-based
GPS reporter (Supplementary Fig. 2B). Since the GFP tag may interfere
with protein interactions, we placed GFP at either the N- or C-terminus
of the inspected eIF3 subunits and examined both variants.

Our results revealed a strong correlation between independent
experimental replicates (Supplementary Fig. 2C, γ =0.9957), as well as
between the IRES- versus 2A-based GPS systems (Fig. 2C, γ = 0.9830),
supporting the appropriateness of our analytical approach and data
quality. We observed overall agreement between results from N- and
C-terminally GFP-tagged eIF3 proteins, with few exceptions (Fig. 2D;
Supplementary Fig. 2C). Specifically, placing GFP at the N-terminus of
eIF3D and eIF3G abolished their interaction with eIF3E and eIF3I,
respectively.We reason that GFP fusion ismore likely to abolish/inhibit
an interaction, rather than create/enhance it, and it is improper to fix
the positions of the GFP tags in all eIF3 subunits since each eIF3
component adopts its own unique three-dimensional structure.
Therefore, we extracted the strongest interactions (positive and
negative) fromeither theN- orC-terminalGFP tagdatasets andmerged
these to generate a complete eIF3 protein stability connectivity map
(Fig. 2E; Supplementary Fig. 2B).

Our data reveal four conspicuous mutually stabilizing pairings:
eIF3D-E, eIF3G-I, eIF3F-M, and eIF3K-L (Fig. 2F). The subunits com-
posed of each pair are adjacent within the eIF3 architecture and phy-
sically associate with each other, suggesting that their interaction is
direct (Fig. 2A, B). Unlike eIF3’s physical interactions that are both
intra- and intermodular, all co-stabilization interactions solely occur
within the same structural module (Fig. 2B, E). Thus, our findings
highlight the specificity of mutual stabilizing interactions and indicate
that protein association does not always enhance protein lifespan. We
applied two community detection algorithms, i.e., Louvain and

Infomap, to illustrate the eIF3 modular interactions and uncovered
consistent clustering patterns. Theseanalyses reveal four separate eIF3
protein stability-based network clusters comprising [B/G/I/J], [H/F/M],
[K/L] and [A/C/E/D], with each of these clusters harboring an apparent
mutually stabilizing subunit pair: eIF3G-I, eIF3F-M, eIF3K-L, and eIF3D-
E, respectively (Fig. 2G). Notably, these stability-based network clus-
ters and the structural modules defined by physical associations are
not identical. Specifically, eIF3K/L and eIF3C/D/E belong to discrete
stability-guided network clusters, despite being physically located in
the same structural module (module III) (Fig. 2A, G).

Subcomplexes driven by cooperative stabilization interactions
are likely to serve as building blocks for further higher-order assembly
of entire protein complexes. Consistent with this hypothesis, the
eIF3D-E, eIF3K-L, and eIF3F-M dimers have previously been demon-
strated to serve as intermediates for assembling the eIF3 complex10,24.
Next, we applied stability-guidedmodularity deduced byGPS assays to
infer how the eIF3 complex forms in cellulo. We made a few assump-
tions in our model. First, protein complex formation is an ordered
multi-step reaction and each step involves binary interactions between
a pair of subunits/subcomplexes given that the probability of more
than two species colliding instantaneously is negligible. Hence, the
assembly process can be represented as a binary tree analogous to
hierarchical clustering procedures. Second, a protein complex can
form through multiple potential assembly paths because each
assembly step is amolecular collision event and therefore stochastic in
nature. Third, certain assembly paths are more probable than others
due to differential binding affinities and co-stabilization interactions
between subunits/subcomplexes. The cooperative protein stability
score measured by GPS assays reports a combined effect from both
such factors.

We developed an algorithm to enumerate all possible binary eIF3
assembly processes (∼3.16 × 1011) and assessed their likelihood scores
based on the degree of inter-subunit co-stabilization within the eIF3
complex (Supplementary Fig. 3A; Fig. 2H) (see “Methods” section). The
likelihood score we calculated for assembly trees positively correlates
with the number of intermediate dimeric subcomplexes formed by
mutually stabilizing partners (Fig. 2I). To illustrate our results more
conveniently, we compressed the top 1000 ranked eIF3 assembly trees
into a single Directed Acyclic Graph (DAG), in which nodes and edges
denote subunits/subcomplexes and interactions, respectively (Fig. 2J;
Supplementary Fig. 3B). The nodes and edges were weighted accord-
ing to the frequencies at which they occurred within the top-ranking
assembly trees. Our data reveal that eIF3 complex assembly occurs in a
highly modular manner. More specifically, it begins predominantly
with the formation of the eIF3F-M, G-I, D-E, and K-L dimers. Then, the
F-M and G-I dimers are further expanded to form H-F-M and B-G-I
trimeric complexes. The resulting dimers and trimers serve as building
blocks for further assembly into the whole eIF3 complex. Ourmodel is
consistent with the eIF3 assembly process inferred using other
approaches24. This consistency supports the feasibility of using protein
stability-guided modularity to infer protein complex assembly pro-
cesses in cellulo.

Divergence of the cooperative stabilization interactions within
PCI complexes
Paralogous complexes are commonly found in eukaryotic genomes.
However, it remains unclear if they are assembled via a conserved
pathway. To address this question, we compared the protein stability-
guided modularity of paralogous PCI complexes, which includes the
regulatory lid of the 26S proteasome (P), the COP9 signalosome (CSN,
C), and the eIF3 complex (I)25. Both the proteasome lid and CSN
comprise nine distinct protein subunits and they are more closely
related to each other than either is to eIF3 that contains 13 subunits.
PCI complexes share a conserved PCI/MPN octameric core consisting
of six PCI-domain-containing proteins plus two MPN-domain-
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containing proteins21. The one-to-one subunit correspondence in their
octameric core supports that PCI complexes originated from a com-
mon evolutionary ancestor (Supplementary Fig. 4A)26–28. Despite their
genetic and structural homology, each PCI complex performs a dis-
crete cellular function. The eIF3 complex plays a central role in protein
synthesis, whereas the CSN and proteasome lid are components of the
ubiquitin-proteasome pathway21,29.

We applied the same approach described above for eIF3 complex
assembly to characterize the assemblyprocesses of the proteasome lid
and CSN (Supplementary Fig. 4B). Interestingly, the network topolo-
gies of the cooperative stabilization interactions in the PCI complexes
were dissimilar. Our data reveal four disjoined mutually stabilizing
pairs in the eIF3 complex (Fig. 2E, F). In the proteasome lid, co-

stabilizing interactions result in a connected chain topology com-
prising modules [Rpn3/6/7/12/SEM1] and [Rpn5/8/9/11], with the
Rpn12 subunit only being loosely associated with the interaction net-
work (Fig. 3A, C). In contrast, the mutual stabilizing interactions in the
CSN give rise to two unconnected modules, i.e., [CSN1/3/8/9] and
[CSN2/4/5/6/7] (Fig. 3B,D). CSN2, CSN5, andCSN9 are likely peripheral
subunits because they presented weak interactions with other CSN
components. The human CSN7 subunit is encoded by two genes
(CSN7a and CSN7b) created by a recent gene duplication event30. In
addition to the module topology, our data reveal that CSN7b has a
competitive advantage over CSN7a in being incorporated into the CSN
complex (Fig. 3D). Similar to eIF3, strong mutually stabilizing protein
pairs in the proteasome lid and CSN have been demonstrated as

Fig. 3 | Cooperative stabilization network rewiring in PCI complexes. A, B The
protein stability-based interaction map of the proteasome lid (A) and CSN (B)
complexes. Louvain network modularity analysis of the data is shown on the right.
Proteins with PCI orMPNdomains or without these domains are denoted as circles,
diamonds, or triangles, respectively. C, D Protein stability analysis of the subunit
indicated on the plot upon supplying the subunit indicated at right. E A schematic
to summarize the inter-subunit physical associations in the proteasome lid andCSN

complexes identified by previous mass spectrometry analyses and co-
immunoprecipitation experiments. F Cooperative stabilizing network topologies
for the three PCI complexes. Paralogous subunits are represented in the same color
and denoted according to the Latin alphabet indicated at left. Arrows denote
directional cooperative stabilization interactions, with line thickness proportion-
ally reflecting the intensity of protein stabilization. Source data are provided as a
source data file.
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displaying physical binding interactions (Fig. 3E)31–37. However, physi-
cal binding does not always affect protein lifespan and only certain
subunits within a complex are subject to partner-mediated
stabilization.

To aid our comparison by adopting an evolutionary perspec-
tive, we examined stability-based interactions of the three PCI
complexes in concert. For clarity, we have color-coded paralogous
proteins and labeled them using the unified Latin alphabet (Fig. 3F

right). Our results reveal that even though the overall network
structures are partially conserved, many interactions have been
altered or maintained but with different intensities (Fig. 3F). Con-
sistent with their evolutionary relationships, the proteasome lid and
CSN complexes share more similar structures than they do with the
elF3 complex. The eIF3 complex harbors five exclusive subunits
(eIF3B, D, G, I, J) that lack paralogs in the CSN or proteasome lid. Our
analysis indicates that [eIF3B/G/I/J] and eIF3D join eIF3 separately;

Fig. 4 | Divergent assembly strategies adoptedby PCI complexes. A The binding
interface between the θ and κ subunits of PCI complexes (PDB: 5L4K, 4D10, 6YBD).
Residues of the θ and κ subunits involved in the binding interface are labeled red
and magenta, respectively. B Comparison of the assembly process of PCI com-
plexes based on their cooperative stabilization interactions. The assembly process
of each complex is presented as a DAG, in which nodes are subunits/subcomplexes
and edges are interactions between two partners. The edges have been weighted
according to the frequencies at which they occurred within the top-ranking

assembly trees. Red dashed circles mark the preferred assembly partner of the θ

subunit at the initial assembly step. C GST pull-down analysis of the θ (Rpn7/CSN1/
eIF3E) subunit of the proteasome lid, CSN and eIF3 complexes. Blots are repre-
sentative of three independent experiments.D CHX-chase analysis of the θ (Rpn7/
CSN1/eIF3E) subunits with/without κ (Rpn6/CSN2/eIF3C), γ (Rpn5/CSN4/eIF3A) or
eIF3D co-expression. GAPDH serves as a loading control. Blots are representative of
three independent experiments. ECross-complex interactions betweenα and λor ε
paralogs. Source data are provided as a source data file.
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[eIF3B/G/I/J] represents an independent module linked to the eIF3
interaction network via λ/eIF3A, κ/eIF3C and δ/eIF3K, with eIF3D
being individually associated with other eIF3 components via θ/
eIF3E (Fig. 3F bottom). Moreover, both κ and δ have already changed
their interaction partners in the proteasome lid and CSN. These
results suggest that altered cooperative stabilization interactions
may permit new interactions, which could facilitate the evolution of
new functions.

We noticed that the most prominent difference between the
proteasome lid and CSN is the interaction between the subunits we
denote θ and κ; θ/Rpn7 and κ/Rpn6 of the proteasome lid are strong
reciprocal stabilizers, but θ/CSN1 and κ/CSN2 of the CSN are not co-
stabilizing (Fig. 3C, D, F). We wondered what might be the molecular
mechanism underlying the rewiring of this co-stabilization network.
Interestingly, despite the θ-κ interacting interfaces in the proteasome
lid andCSN complexes being highly divergent at the primary sequence
level, they look remarkably analogous from the viewpoint of protein
structure (Fig. 4A). Another apparent reconfiguration among the
paralogous PCI complexes occurred between θ and γ; θ-γ co-stabili-
zation only exists in the proteasome lid and CSN, but not in eIF3
(Fig. 3F). As for the θ-κ interactions, the θ-γ interface in the three PCI
complexes looks structurally similar, yet the residues involved in
binding differ (Supplementary Fig. 4C). Therefore, structural infor-
mation cannot be used to infer co-stabilization interactions.

We applied deduced stability-guided modularity to compare the
likely assembly mechanism of the three PCI complexes. Strikingly, our
models suggest that the assembly scheme of the three PCI complexes
differ overall both in terms of individual protein assembly steps and
overall modular organization (Fig. 4B). On close inspection, these
deviations appear to arise at the initial step of protein coalescence, i.e.,
the types of dominant dimeric intermediates over the course of
complex assembly are not the same. For example, the θ subunit (Rpn7/
CSN1/eIF3E) preferentially interacts with the κ/Rpn6 subunit in the
proteasome lid, but it predominantly assembles with the γ/
CSN3 subunit and eIF3D in the CSN and eIF3 complexes, respectively
(as revealed by the red dashed circles in Fig. 4B). We performed pull-
downandcycloheximide-chase analysis to verify that assembly and the
stabilizing partner of the θ subunit of the proteasome lid, CSN or eIF3
complex, respectively, differ (Fig. 4C, D). The modest binding
observed between Rpn7/θ and Rpn3/γ may be bridged by Rpn6/κ. In
addition, the global assembly topologies of the three PCI complexes
also differ. We observed no clear modularity in the course of the
proteasome lid assembly. Consistent with previous findings38, δ/Rpn12
is the last component incorporated into the proteasome lid. In con-
trast, the DAG of CSN reveals two clearly distinctmodules (adjusted p-
value = 0.0081; see “Methods” section). Our assembly model supports
that in the course of CSN formation, interactions within each module
are generated first before interactions form between these two mod-
ules. Assembly of eIF3 also occurs in a modular manner. It begins with
the formation of four small independent subcomplexes—[α/β/ε], [γ/δ],
[θ-eIF3D] and [eIF3B/G/I]—before further assembling into the entire
eIF3 complex.

Given the partial preservation of ancestral cooperative stabili-
zations among the three PCI complexes, we wondered if cross-
complex co-stabilization interactions also exist. Our results indicate
that each subunit only interacts with its corresponding partners
from the same complex, implying minimal cross-complex interac-
tions among PCI complexes (Supplementary Fig. 4D). This finding
suggests ancestral cooperative stabilization interactions are main-
tained through protein co-evolution. Exceptions to this phenom-
enon are the α-λ and α-ε interactions. We observed cross-complex
interaction between α and λ or ε paralogs from the proteasome lid
and CSN complexes (Fig. 4E). α/Rpn8 was stabilized by both of its
authentic partners, i.e., λ/Rpn5 and ε/Rpn11, but also by its CSN-
associated paralogs, i.e., λ/CSN4 and ε/CSN5, respectively. The

crosstalk effect is unidirectional, probably due to the CSN complex
having stronger α-λ and α-ε interactions. Collectively, these results
support that cooperative stabilization interactions and assembly
processes in paralogous PCI protein complexes have been rewired.
Moreover, reconfigured assembly processes can reduce the like-
lihood of deleterious cross-complex mixed assemblies.

Reconfiguration of the co-stabilization network in paralogous
LSm and Sm complexes
We extended our analysis to the Sm and LSm (like Sm) paralogous
complexes. Sm and LSm proteins share a conserved structural fold,
termed the Sm fold, and they typically assemble into a homomeric or
heteromeric torus to regulate RNA metabolism39. Eubacteria and
Archaea only carry one or two LSm/Sm proteins forming homomeric
complexes. In contrast, eukaryotic genomes host more than 20 LSm/
Sm proteins that assemble into various heteroheptameric complexes,
including two LSm-type rings (the LSm1-7 complex and LSm2-8 com-
plex) and two Sm-type rings (the Sm complex and U7 snRNP-specific
Sm complex) (Fig. 5A)6,7. Each of these complexes regulates different
steps of RNA processing, including splicing, editing, and
degradation39. Phylogenetic analysis has indicated that the expansion
of the eukaryotic LSm/Sm gene family proceeded through two waves
of repeated partial duplications and divergence (Supplementary
Fig. 5A)40. Thefirstwave createdmultiple paralogous LSmgenes froma
single ancestral gene. Each paralogous ancestral LSm gene then
duplicated again, resulting in seven further Sm genes. Consequently,
each of the seven Sm proteins displays higher sequence homology to
their corresponding LSm proteins than to other Sm proteins. The
paralogous relationships between LSm and Sm proteins are summar-
ized in Fig. 5A.

To deduce the assembly process of human LSm/Sm complexes
and their potential crosstalk, we mapped stability-based connectivity
among ten LSm proteins (LSm1-8, LSm10, LSm11), eight Sm proteins
(SmB/B′, D1, D2, D3, E, F, G, where B′ is a splicing variant of B), aswell as
pICln that functions as an assembly chaperone for Sm complexes
(Fig. 5B). Our results revealed a strong correlation between indepen-
dent experimental replicates (Supplementary Fig. 5B, γ =0.9708), as
well as overall agreement between results from the N- and C-terminal
GFP-tagged LSm/Sm proteins (Supplementary Fig. 5C, γ = 0.8742).
Consistentwith the notion that surplus unassembled LSm/Smsubunits
are cleared by proteolysis, elevating the expression level of each
individual LSm/Sm protein resulted in a reduction of its own lifespan
(as revealed by the diagonal pattern of blue boxes from upper left to
lower right in Fig. 5B). In some cases, enhanced expression of a given
LSm/Sm protein also reduced the lifespan of other complex compo-
nents, in particular its corresponding paralogs or isoforms, implying
competition for identical binding partners exists between specific
LSm/Sm pairs, such as LSm1-LSm8 and SmB-SmB′ (Fig. 5B). To display
protein stability-based interactions among LSm/Sm proteins more
intuitively, we have depicted our results as a network diagram inwhich
nodes of the same color denote paralogous proteins, and the red and
blue arrows of different thickness represent the weighted positive/
stabilization and negative/destabilization interactions, respectively
(Fig. 5C). Similar to PCI complexes, cooperative stabilization interac-
tions only exist between particular LSm/Sm proteins. Despite the
existence of minor cross-complex interactions, strong mutual stabi-
lizing interactions arose primarily within LSm or Sm complexes, with
the LSm3-LSm10 interaction being an apparent exception (Fig. 5B, D).
Indeed, the physical association between LSm3 and LSm10 has been
reported previously41,42. Together, our data imply a general dis-
crepancy between components forming LSm- and Sm-type complexes
in vivo. Notably, despite LSm1, LSm8 and SmB/B′ being paralogous
proteins, our analysis reveals a definite distinction between [LSm1/
LSm8] and SmB/B′ in terms of their stability profiles, in accordance
with the notion that LSm1 and LSm8 aremore phylogenetically related
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to each other than either is to SmB/B′ (Fig. 5B; Supplementary Fig. 5A).
Although pICln has only been reported as a chaperone assisting Sm
ring assembly, we found that pICln stabilized practically all Sm and
LSm proteins, apart from LSm1, LSm5 and LSm8 (Fig. 5B, E), revealing
that pICln may also be involved in LSm assembly. Interestingly,
excessive expression of pICln facilitated its own degradation, and
expressing LSm/Sm proteins also reciprocally stabilized pICln
(Fig. 5E, F).

Next, we compared cooperative stabilization interactions
between LSm- and Sm-type complexes. As for the different PCI com-
plexes described above, the groupings of reciprocal stabilizers in the
LSm and Sm rings varied considerably (Fig. 6A), indicating that their
assembly paths differ in cellulo. For instance, LSm1/8 interacts with
LSm2 in LSm-type rings, whereas SmB/B′ (an LSm1/8 paralog) assem-
bles with SmD3 (an LSm4 paralog) in Sm-type rings. Upon comparing
paralogous protein pairs, we observed that the LSm10-LSm11 pair

Fig. 5 | Protein stability connectivitymap of LSm and Smproteins. A Schematic
depiction of the subunit arrangement of the LSm- and Sm-type complexes. Para-
logous proteins are represented by the same colors. The paralogous relationships
between LSm and Sm proteins are indicated at right. B The protein stability-based
interaction map of LSm/Sm proteins. The matrix heatmap represents log2-fold-
change in protein stability of the protein indicated at left upon overproducing the
protein indicated on top. LSm/Sm subunits are ordered according to the complex
they are associated with and the subunit arrangement in the corresponding com-
plex shown in (A). C A network diagram depicting the entire LSm/Sm protein
stability-based interaction network, in which nodes are subunits and edges are

interactions between two partners. Paralogous proteins are shown in the same
colors. Positive/stabilization or negative/destabilization interactions are indicated
as red or blue arrows, respectively. X→Y indicates that supplying X stabilizes/
degrades Y, whereas X↔Y denotes that X and Y aremutually stabilizing/degrading.
The thickness of the arrow lines is weighted according to the degree of interaction.
D Protein stability analysis of LSm3 and LSm10 by GPS assays. E Protein stability
analysis of proteins indicated on top with or without providing pICln. F Protein
stability analysis of pICln with or without co-expressing the LSm/Sm proteins
indicated at right. Source data are provided as a source data file.
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displayed marked reciprocal stabilization, but it was much more
moderate for the paralogous LSm2-LSm3 and SmD1-DmD2 pairs
(Fig. 6B). Similarly, the LSm4-LSm7 pair proved to be mutually stabi-
lizing, but the paralogous SmD3-SmGpairwas not (Fig. 6C). Apart from
these different groupings, we also noted that the cooperative stabili-
zation interactions within LSm-type rings were stronger overall and
more integrated than those of Sm-type rings (Fig. 6A). The stability
interactions of LSm-type rings resolved as being chain-like and com-
prising two network clusters [LSm1/8-2] and [LSm3-6-5-7-4] (Fig. 6A
left). Remarkably, the layout of stability-based LSm protein interac-
tions exactly mirrors the arrangement of subunits in the LSm complex
determined by crystal structure analysis, i.e., LSm1-2-3-6-5-7-4 (Sup-
plementary Fig. 5D, E). In contrast, the stability-based connections in
Sm-type complexes were mostly weak but revealed four network
clusters, i.e., [SmD3-B/B′], [SmD1-D2], [LSm10-11] and [SmF-E-G]
(Fig. 6A right). Importantly, these mutually stabilizing Sm dimers/tri-
mers exactly match Sm assembly intermediates revealed by in vitro
assembly experiments43. This consistency reinforces the reliability of
using protein stability-guided modularity to infer protein complex
assembly processes.

To investigate cooperative stabilization interactions further, we
analyzed the lifespan of unassembled LSm/Sm proteins by expressing
them alone (at either low or high levels) and comparing the outcome
with the degree of partner-dependent stabilization for each individual
LSm/Sm protein. Unexpectedly, the lifespan of unassembled LSm
proteins proved to be surprisingly divergent, whereas Sm proteins
were generally more stable (Fig. 6D; Supplementary Fig. 5F). Associa-
tionwith stabilizing partners by co-expression reduced the differences
in protein stability among paralogous LSm/Sm proteins (Supplemen-
tary Fig. 5G). The lifespan of unassembled LSm/Sm proteins was
negatively correlated with their degree of partner-mediated stabiliza-
tion (t-test for correlation = −0.6779; p-value = 0.00199) (Fig. 6E). For

example, orphaned LSm10 and LSm11 were the least stable among
LSm/Sm proteins, yet they displayed the strongest partner-dependent
stabilization (Fig. 6B, D). These findings highlight an underappreciated
impact of protein interaction networks on protein lifespan and
emphasize the critical importance of investigating how protein stabi-
lity is regulated in native cellulo contexts. In summary, our results
reveal that the assembly process of paralogous PCI and LSm/Sm
complexes has been evolutionarily rearranged.

Discussion
We have performed an unprecedentedly comprehensive comparison
among paralogous protein complexes from the viewpoint of protein
stability-based modularity. Our results show a strong divergence of
cooperative stabilization networks in the PCI and LSm/Sm paralogous
protein complex families, revealing a unique and previously unap-
preciated characteristic of paralogous protein complexes. Although
their structural organizations are maintained, paralogous protein
complexes do not necessarily adopt the same assembly strategy as
their ancestral complex but instead can evolve one anew. Altering
assembly processes allows paralogous complexes to recruit new sub-
units, facilitating neo-functionalization. The divergence in assembly
strategies also helps to insulate their functional modules from per-
turbation by building incompatibilities against higher-order mixed
assemblies and precluding the formation of toxic nonfunctional chi-
meric complexes.

Although significant advances have been made in identifying
protein complexes, their formation processes have remained difficult
to characterize44,45. At present, determining the assembly path of
protein complexes mainly relies on in vitro reconstruction of protein
complexes using recombinant proteins, or, alternatively, structural
information is gathered to establish the physical interactions between
subunits. Our data suggest that structural information is insufficient to

Fig. 6 | Divergence of protein stability-guidedmodularity in LSm- and Sm-type
complexes. A Louvain two-nearest-neighbor analysis of LSm- and Sm-type com-
plexes based on data shown in Fig. 5B. Nodes of the same color denote paralogous
proteins, and black arrows represent directional cooperative stabilization interac-
tions. The thickness of the arrow lines proportionally reflects the degree of protein
stabilization. Subunits forming the same network cluster are surrounded by a light
gray shadow. B, C Comparison of paralogous interactions within LSm and Sm

complexes in terms of cooperative stabilization. Protein stability analysis by GPS
assay of proteins indicated on top with or without co-expressing the proteins
indicated at right. D Comparison of protein stability among various LSm and Sm
proteins upon their low-level expression (from a single copy of the GPS reporter).
GFP was tagged at the C-termini of LSm/Sm proteins. E Correlation analysis
between the stability of unassembled LSm/Sm proteins and their degrees of sta-
bilization by corresponding partners.
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deduce the assembly processes of protein complexes in cellulo. Elec-
trospray mass spectrometry has also been widely deployed, but it
relies on the assumption that protein complex assembly pathways
in vivo are the reverse of disassociation processes defined in vitro8,31,32.
That assumption is questionable and it remains unclear if, in fact,
assembly processes in vitro reflect the crowded cellular environment.
For instance, molecular chaperones and cellular proteolysis systems
are typically missing from in vitro models. Interestingly, nearly half of
the subunit pairs found to cooperatively stabilize each other in our
study were previously identified as assembling co-translationally46,47,
highlighting the importance of characterizing protein complex
assembly processes in cellulo. A major advantage of our protein
stability-based approach is that we analyzed protein complexes in
living cells in which all cellular factors remain intact. Our method can
be adapted to analyze protein complexes for which structural infor-
mation is lacking or that are difficult to purify. It also efficiently cap-
tures assembly intermediates that may not be sufficiently stable to
survive biochemical purification procedures. This technology is
adaptable to systematic high-throughput platforms and is also
applicable to different cell types and cell states, in which different
complex subunits may be involved.

Nevertheless, there are potential issues to be considered when
deploying this method. For instance, the GFP tag may influence com-
plex assembly. To resolve this issue, we generated two datasets in
which GFP had been fused at either the N- or C-terminus of the
examined protein, resulting in highly consistent outcomes. It is also
possible to apply the same approach without utilizing an epitope tag
by using Western blotting or quantitative mass spectrometry instead.
In addition, our approach relies on protein overproduction, with the
caveat that ectopic overexpression might lead to nonphysiological
complex formation. Nevertheless, it has been shown previously that
NED subunits are in fact produced naturally in super-stoichiometric
quantities in normal disomic cells19. Furthermore, in accordance with
our finding that eIF3K-L, eIF3D-E, and eIF3G-I are co-stabilizing pairs,
previous individual knockdown experiments in HeLa cells also indi-
cated that protein levels of the eIF3K and L, eIF3D and E, and eIF3G and
I pairs are strictly dependent on each other24. Lastly, our study focuses
on stable and obligate protein complexes. Whether cooperative sta-
bility applies to subunits forming transitory protein complexes or
multitasking subunits (i.e., shared between different complexes or
involved in additional activities independent of the complex itself)
remains to be examined48,49.

The clear reconfiguration of the co-stabilizing network in para-
logous LSm/Sm and PCI complexes strongly suggests that these
paralogous complexes do not assemble via identical pathways.
Numerous independent lines of evidence echo our conclusions. The
assembly models of the eIF3 complex derived from genetic knock-
down and biochemical approaches are consistent with our
conclusions10,24. Previous analysis of the CSN and proteasome lid
assembly mechanisms also supports that subunits of these two com-
plexes coalesce in different orders, with Rpn12/δ or CSN5/ε being the
last-assembled subunits for the proteasome lid and CSN,
respectively50. Functionally, incorporation of Rpn12 couples comple-
tion of proteasome lid assembly to its attachment to form a complete
19S proteasomal regulatory particle38. CSN5 acts as the catalytic center
for the CSN complex, yet it does not exert any activity until the
holoenzyme has been assembled51. Likewise, the assembly modes and
RNA recognition properties of the LSm- and Sm-type complexes have
also proven quite different. LSm-type rings assemble spontaneously
and are stable without RNA. The LSm2-8 complex interacts with RNA
substrates via end recognition,with theuridine nucleotide at the 3′ end
of the RNAmolecule being anchored by LSm3 and the preceding three
nucleotides being recognized by LSm2/8/452. In contrast, Sm-type
rings only assemble in the presence of RNA upon the preformed
[SmD1-D2], [SmD3-B] and [SmE-F-G] subcomplexes having coalesced43.

The Smcomplexes formpassive scaffolds aroundRNAvia internalRNA
recognition, whereby seven consecutive nucleotides, each of which is
recognized by a distinct Sm protein, are bound within the central
aperture of the Sm complex52. Together, these findings indicate that
the assemblyprocesses follow ahidden logic according to the function
of the complex. Possessing a unique assembly process can ensure that
a complex executes its specific function more efficiently. Moreover,
refiguring an assembly process can reduce cross-complex interactions
among paralogous subunits, further enhancing complex specificity.

Our finding of evident rewiring of co-stabilizing networks in the
PCI and LSm/Sm complex families is intriguing considering their
genetic and structural homology and the central role of cooperative
stabilization interactions in driving protein complex formation. The
stable integrity of large protein complexes is maintained via multiple
inter-subunit interactions. It is possible that this multivalentmolecular
interaction microenvironment provides an ideal scenario for protein
complex diversification due to its greater tolerability to changes in
interactions among individual subunits or even interaction partners
without eliciting loss of protein complex integrity, thereby endowing
flexibility to develop new network properties53. Although the initial
changesmay be due to genetic drift, assembly reconfiguration is likely
driven by selection once the functions of paralogous complexes start
to diversify.

The molecular mechanism driving cooperative stabilization
network rewiring in duplicated complexes may be attributable to
the gain or loss of degrons (degradation signals) in unassembled
subunit species. Proteasome-mediated proteolysis requires highly
specific interactions between ubiquitin ligases and their corre-
sponding degrons in substrate proteins13,16,17. For instance, the
UBE2O, HUWE1, and CRL4DCAF12 ubiquitin ligases recognize exposed
juxtaposed basic and hydrophobic patches, a short stretch of
positively-charged residues, and C-terminal double glutamate resi-
dues as the degrons of uncomplexed RPL24, RPL26, and CCT5 pro-
teins, respectively, to trigger their degradation54–56. Those degron
motifs are buried within the structure upon complex formation and
thus assembled proteins can evade degradation. It is possible that
coordinated substitutions of amino acids occurring as pairs of
duplicated binding subunits co-evolve coincide with unanticipated
gain or loss of degron sequences and, consequently, reconfiguration
of cooperative stabilization networks. In line with this speculation,
despite being structurally similar, we observed near-complete
sequence divergence at the θ-κ and θ-γ interacting surface of the
three PCI complexes. Rather than concerted duplication of all
components at once, step-wise partial duplication is considered a
prevalent evolutionary route for duplication of protein complexes57.
It is tempting to explore if the reconfiguration of co-stabilization
interactions correlates with the relative duplication ages of different
subunits of paralogous protein complexes.

Our results provide additional conceptual advances regarding
protein complex formation processes and how protein lifespan is
regulated in cells. Our findings support the notion that complex
assembly is both ordered and modular15,58. This modular design is
advantageous because it reduces the complexity of the assembly
process and, consequently, minimizes the likelihood of erroneous
aggregates. It also allows rapid regulation at complex levels and
enables modules to be interchanged to form distinct protein com-
plexes. Interestingly, cooperative stabilization interactions can either
be reciprocal (symmetrical dependency) or unilateral (asymmetrical
dependency) and only certain subunits within a complex are subjected
to partner-mediated cooperative stabilization. Considering the uni-
lateral interaction between TAF6/TAF9 for instance (TAF9 is stabilized
by TAF6, but the reverse is not true), our data suggests that, unlike
unassembled TAF9 that is labile, unassembled monomeric TAF6 is
stable in the cell. Therefore, the loss or gain of distinct individual
subunits could have diverse impacts on the integrity of corresponding
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protein complexes. Importantly, stabilizationdepends on the ability of
each protein to homodimerize or heterodimerize. Unlike proteins that
form heteromeric complexes, proteins that form homopolymers can
“self-stabilize” (rather than being stabilized by their binding partners).
Consequently, the lifespan of this latter group of proteins “increases”
when their own protein synthesis level is elevated. Finally, our findings
illustrate the importance of analyzing protein lifespan in the context of
native protein-protein interaction networks. Identical proteins (i.e.,
having the same amino acid sequence and covalent modifications) in a
uniform proteolytic environment can display distinct lifespans,
depending on their individual interaction networks within cells. We
anticipate that further investigations of protein lifespan-directed
interactomes will prove highly valuable in gaining deeper insights
into proteome organization, regulation, and evolution.

Methods
Cell culture and manipulations
HEK293T (ATCC® CRL-3216) cells were cultured in Dulbecco’s
Modified Eagle’sMedium supplementedwith 10% fetal bovine serum
(Hyclone), 100 μg/ml of streptomycin and 100 U/ml of penicillin
(Gibco) at 37 °C in a 6% CO2 atmosphere. To block proteasome-
dependent protein degradation, cells were treated with 1 μM bor-
tezomib (BioVision) or 10 μM MG132 (Merck Millipore) for 8 h. For
the cycloheximide-chase assay, cells were treated with 100 μg/mL
cycloheximide (Calbiochem), followed by sample collection at
multiple time-points. Cell transfection was performed using
TransIT-293 transfection reagent (Mirus Bio) according to the
manufacturer’s instructions. To produce lentiviruses, HEK293T cells
were co-transfected with pRev, pTat, pHIV gag/pol, pVSVG, and the
lentiviral construct of interest. Viral particle-containing super-
natants were collected 48 h post-transfection. Transduction was
conducted in a medium containing 8 μg/mL polybrene (Sigma-
Aldrich) for 24 h.

GST pull-down assay
HEK293T cells stably expressing GST‐tagged and Flag-tagged or HA-
tagged PCI subunits were harvested and lysed in ice-cold IP‐lysis buffer
(20mM Tris pH 7.6, 150mM NaCl and 0.5% IGEPAL CA‐630) supple-
mented with protease inhibitors (Roche). The clarified lysates were
incubated with Glutathione‐conjugated beads (GE Healthcare Life
Sciences) for 4 h at 4 °C. The beads were washed three times in IP‐lysis
buffer and then boiled in 2× Laemmli sample buffer. The eluted pro-
teins were subjected to immunoblotting. Primary antibodies used for
immunoblotting were purchased from the following venders: GST (GE
Healthcare, 27457701 at 1:1000), Flag (Sigma‐Aldrich, M2 at 1:1000),
HA (Abcam, ab130275 at 1:1000), GFP (Takara Bio Clontech, JL‐8,
632381 at 1:1000) and GAPDH (GeneTex, 100118 at 1:1000). Source
data are provided as a source data file.

Characterization of protein stability-based interactions by
GPS assays
TogenerateGPS reporter constructs, the genes of interestwere cloned
into pLenti-GPS vectors (N and C-GFP tag versions) by means of
Gateway recombination (Invitrogen). To circumvent the GFP tag
potentially interfering with protein binding, we prepared both N- and
C-terminally GFP-tagged GPS reporter constructs for each subunit for
comparison. TheGPS reporter was driven by the EF1α promoter unless
otherwise indicated. To generateGPS reporter cell lines,HEK293T cells
were infectedwith lentiviruses carrying GPS constructs at a lowMOI of
∼0.2 and then selected by 1μg/ml puromycin (Clontech) for 10 days.
Since the GPS reporter was integrated into each cellular genome as a
single copy, and the expression level of the gene downstream of the
IRES site, i.e., the GFP-fusion protein, is only ∼30% that of the gene
upstream of IRES, i.e., RFP, the expression level of the GFP-fusion

protein lies within physiological ranges and is not highly
overexpressed.

To map stability-based interactions between subunits within a
protein complex, we separately overexpressed subunits forming the
samecomplex using lentiviruses prepared froma2A-BFP construct at a
MOI of ∼5 and analyzed the treated GPS reporter cells by FACS 40 h
post-infection. Subunits from unrelated protein complexes were
included as negative controls. The BFP signal indicates the synthesis
rate of the overexpressed subunit.

FACS analysis was performed by using a BD LSR Fortessa system
(BD Biosciences) operated by BD FACSDivaTM software. The 405-nm,
488-nm, and 561-nm lasers were used to stimulate BFP, GFP, and RFP,
respectively. No background correction or compensation was applied.
Cells were gated by doublet discrimination and RFP signals. The RFP-
positive cells were further gated by BFP signals to discriminate GPS
reporter cells overexpressing the given subunit. A total of 20,000 RFP-
positive single cells were recorded for each reporter cell line. To
ensure data consistency, all GPS experiments were independently
performed in duplicate or triplicate. Histograms and scatter diagrams
were plotted in FlowJo software.

Quantitative characterization of the HUS1-RAD1 cooperative
stabilization interaction
Data collection. To generate HUS1 and RAD1 GPS dosage cell libraries,
HEK293T cells were separately infected with different amounts of
lentiviruses expressing HUS1 and RAD1 GPS reporters (MOI ranged
from 1∼5) and mixed together. To express HUS1 and RAD1 at different
dosages, library cells were separately infected with different amounts
of 2A-BFP viruses expressing HUS1 or RAD1 (MOI ranged from 1∼10)
and then mixed together. In this system, millions of single cells, each
possessing a unique combination of HUS1 and RAD1 expression levels,
were analyzed together as a single sample by means of three-color
FACS.We analyzed 1,000,000 RFP-positive cells by FACS for HUS1 and
RAD1 GFP dosage cell libraries expressing different amounts of RAD1
and HUS1, respectively.

Data processing. We exported the RAD1 (examined subunit)-HUS1
(overexpressed subunit) and the HUS1 (examined)-RAD1 (over-
expressed) FACS data as plain text files containing the BFP, RFP, and
GFP intensities of individual cells determined by FlowJo software. We
subdivided the BFP signals into multiple intervals and split the data
points of (BFP, RFP, GFP) triplets into subsets accordingly. For each
split dataset, we used a linear model (Y =RX) to fit the GFP(Y) and
RFP(X) signals, whereR is theGFP/RFP ratio.R increaseswith BFPwhen
BFP is below a threshold (K), but it starts to decrease when BFP sur-
passes K. We identifiedK to be 16561 and 22248 for the RAD1-HUS1 and
HUS1-RAD1 datasets, respectively. By setting these two values as the
upper limits of BFP signals, we obtained 887,002 (89.99% of the RAD1-
HUS1 dataset) and 926,278 (94.37% of the HUS1-RAD1 dataset) data
points for subsequent analysis. All data processing and model fitting
were performed in Python 3.7 with the NumPy 1.19.5 and SciPy 1.4.1
Python packages.

Mathematical modeling of heterodimer formation. To quantify the
cooperative stabilization interactionbetweenHUS1 andRAD1,webuilt a
mathematical model of the heterodimeric protein complex formation
system. This model can capture the nonlinearity of the FACS data and
estimate explainable parameters (e.g. cooperative stability) by fitting to
experimental data. There are three components in the heterodimer
formation system, i.e., protein 1 (p1), protein 2 (p2), and the p1-p2 het-
erodimer (p3). Since all the proteins we examined in the experiments
were driven by constitutive promoters, we set the synthesis rates of p1

and p2 as constants (C1 and C2, respectively). All protein species (p1, p2,
and p3) have their own degradation rates (λ1, λ2, and λ3, respectively).
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Dimerization was assumed to be much faster than synthesis and
degradation, so equilibrium is reached instantaneously, and Eq. 1 always
holds:

p1p2Ka =p3 ð1Þ

where Ka is the association constant.
Thus, we described the system by Eqs. 2−5:

p1
tot =p1 +p3 ð2Þ

p2
tot =p2 +p3 ð3Þ

dp1
tot

dt
=C1 � λ1p1 � λ3p3 ð4Þ

dp2
tot

dt
=C2 � λ2p2 � λ3p3 ð5Þ

where ptot
1 and ptot

2 are the total concentrations of p1 and p2, respec-
tively. Equations 2 and 3 state that the total concentration of a protein
species is the sum of its concentrations in the monomeric and dimeric
forms. Equations 4 and 5 describe that the net rate of change for a
protein species is its synthesis rate minus the degradation rates of
these two forms. By solving these equations at steady-state where
dp1

tot

dt = dp2
tot

dt =0, we obtained solutions for p1, p2, and p3 in terms of the
model parameters:

p1
tot is obtained by adding Eqs. (6) and (8):

p1
tot =

αðβ+2λ1KaC2Þ
2λ1λ3Kaβ

ð9Þ

where α = KaC1λ3 � KaC2λ3 � λ1λ2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

2C1
2λ3

2 +Ka
2C2

2λ3
2 � 2Ka

2C1C2λ3
2 + 2KaC1λ1λ2λ3 + 2KaC2λ1λ2λ3 + λ1

2λ2
2

q

β=KaC1λ3 � KaC2λ3 + λ1λ2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

2C1
2λ3

2 +Ka
2C2

2λ3
2 � 2Ka

2C1C2λ3
2 + 2KaC1λ1λ2λ3 + 2KaC2λ1λ2λ3 + λ1

2λ2
2

q
:

The cooperative stability strength ϕ is defined as the ratio of the
degradation rate constants of the monomer and dimer:

ϕ=
λi
λ3

ð10Þ

where i= 1 or 2.

Model fitting to estimate cooperative stability
We used the curve fitting function in the SciPy python package to find
the parameter values (i.e., degradation rate constants) that best fit the
experimental data. The GFP intensities of the GPS data represent the

total concentration of protein 1 (p1
tot). The RFP and BFP intensities

represent the p1 synthesis rate (C1) and p2 synthesis rate (C2),
respectively. Since the units of RFP and BFP intensities are not
equivalent for representing the protein synthesis rates, we introduced
a factor (n) into the model to correct for the difference between RFP
and BFP signals:

RFP=n ×BFP ð11Þ

Thus, our model has five undetermined parameters (λ1, λ2, λ3, Ka,
n). We set three possible initial values (0.1, 1, and 10) for each para-
meter and generated all possible combinations (35 = 243) of initial
value sets π for the five parameters.

πi = λ1,λ2,λ3,Ka,n
� �

, i= 1,2, . . . ,243 ð12Þ

An initial parameter set π specifies the relationship between GFP
(p1

tot), RFP (C1), and BFP (C2) as a function f π ofC1 andC2 according to
Eq. (9):

p1
tot = fπðC1,C2Þ ð13Þ

The loss function Q2 πð Þ quantifies the square distance between
the measured GFP and predicted p1

tot according to the model π:

Q2 πð Þ=
XN

i= 1

ðGFPi � fπðRFPi,BFPiÞÞ2 ð14Þ

Optimization of π was undertaken by setting initial values of π to
each one of the 243 possible combinations and iteratively applying
gradient descent until convergence. We separately fitted the RAD1-
HUS1 and HUS1-RAD1 datasets by setting the lower bound of each
parameter as zero. The fitting result for λ1 and λ3 is robust to different
sets of initial values, with only a few outliers. Therefore, we used the
median of the 243 results and Eq. (10) to estimate the cooperative
stability ϕ of RAD1 and HUS1, respectively.

Generation of phylogenetic trees for LSm and Sm proteins
The evolutionary history was inferred using a Maximum Likelihood
method based on the JTT matrix-based model59. The tree with the
highest log likelihood (−3787.65) is shown. The percentage of trees
in which the associated taxa clustered together is shown next to
the branches. Initial tree(s) for the heuristic search were obtained
automatically by applying Neighbor-Joining and BioNJ algorithms to
a matrix of pairwise distances estimated using a JTT model and
then selecting the topology with superior log likelihood value.
The analysis involved 18 amino acid sequences. There were a total
of 128 positions in the final dataset. Evolutionary analyses were
conducted in MEGA760.

p1 =
KaC1λ3 � KaC2λ3 � λ1λ2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

2C1
2λ3

2 +Ka
2C2

2λ3
2 � 2Ka

2C1C2λ3
2 + 2KaC1λ1λ2λ3 + 2KaC2λ1λ2λ3 + λ1

2λ2
2

q

2λ1λ3Ka

ð6Þ

p2 =
�KaC1λ3 +KaC2λ3 � λ1λ2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

2C1
2λ3

2 +Ka
2C2

2λ3
2 � 2Ka

2C1C2λ3
2 + 2KaC1λ1λ2λ3 + 2KaC2λ1λ2λ3 + λ1

2λ2
2

q

2λ2λ3Ka

ð7Þ

p3 =
c2ðKaC1λ3 � KaC2λ3 � λ1λ2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

2C1
2λ3

2 +Ka
2C2

2λ3
2 � 2Ka

2C1C2λ3
2 + 2KaC1λ1λ2λ3 + 2KaC2λ1λ2λ3 + λ1

2λ2
2

q
Þ

λ3ðKaC1λ3 � KaC2λ3 + λ1λ2 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ka

2C1
2λ3

2 +Ka
2C2

2λ3
2 � 2Ka

2C1C2λ3
2 + 2KaC1λ1λ2λ3 + 2KaC2λ1λ2λ3 + λ1

2λ2
2

q
Þ

ð8Þ
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Network modularity analysis
To identify modules in a protein complex, we applied two community
detection algorithms, Louvain and Infomap, by using the R package
igraph. The input graphs were the undirected connections filtered
according to cooperative stabilization strengths between each pair of
complex subunits (>1.2). The function, cluster_louvain, implements the
multi-level modularity optimization algorithm to find clusters dis-
playing strong modularity in large networks based on the modularity
measure and a hierarchical approach. The weights of the connections
between each node were defined as the cooperative stabilization
strengths between each pair of complex subunits. The modularity
algorithm measures the density of connections within clusters com-
pared to the density of connections between clusters. The other
function, cluster_infomap, exploits the map equation to find cluster
structures in networks by minimizing the description length of the
motion of a random walk. The cooperative stabilization strength
between each pair of complex subunits was set as the edge weight,
which represents the likelihood of the random walker using that con-
nection to reach the next object.

Algorithm to score the likelihood of complex assembly trees
Concept and overview of the algorithm. A multi-component protein
complex is formed by incrementally agglomerating smaller subunits. An
assembly history denotes a series of these assembly events. For instance,
a trimer ABC can be formed by first joining A and B and then appending
C to the AB dimer (A, B, C! AB, C! ABC). We postulated that the
assembly processes of protein complexes exhibit the following proper-
ties according to the basic principles of chemical reactions and our
empirical data. First, two subunits are joinedat each stepof the assembly
process since the probability of more than two subunits colliding
instantaneously is negligible. Hence, an assembly history can be repre-
sented as a binary tree analogous to the hierarchical clustering process.
Second, protein complexes can form through multiple possible assem-
bly histories since each assembly step is a molecular collision event and
hence stochastic in nature. Third, despite their stochasticity, certain
assembly histories are muchmore likely to occur due to the differential
stabilities of subcomplexes. Subcomplexes possessing stronger levels of
cooperative stability tend to form earlier in the assembly process since
they are more stable than the constituent subunits. Based on these
assumptions, we proposed algorithms to enumerate all possible
assembly histories of a relatively small protein complex, to assess the
likelihood of each assembly history from its cooperative stability data,
and to represent the likely assembly histories concisely as a DAG
(Directed Acyclic Graph). The algorithms are illustrated by a schematic
diagram in Fig. S3A and are described further below.

Input:
Matrix (X) of the pairwise cooperative stability data for complex
subunits

Output:
An ensemble of all possible binary assembly trees with
likelihood scores
DAG representation of the top-ranking assembly trees

Procedure:
(1) Generate all possible assembly trees for a given protein complex
(2) Calculate their likelihood scores based on cooperative

stability data
(3) Integrate the top-ranking assembly trees into a DAG

Generation of all possible assembly trees
We developed a two-phase tree generation procedure. In the first
phase, we generated all possible structures of binary trees with N
distinct leaves (subunits). In the second phase, we enumerated all
possible assignments of leaf node identities for each tree structure.

Phase 1: Enumerating binary tree structures with a fixed numberN
of leaf nodes.

We represent a binary tree with a regular expression defined
below. We denote T as a string surrounded by parentheses on both
sides: T = ðSÞ, where S is either an integer 1≤m≤N or two substrings
TL,TR. The former and latter expressions represent a subtree of a
single node and a subtree with two branches, respectively. For
instance, (((1),(1)),(1)) represents a binary tree with three leaf nodes
that are compatiblewith the assemblyhistory (A, B,C!AB,C!ABC).
The integer m denotes the number of descendant leaf nodes of the
subtree. We further define Pm as a set of all binary splits of an integer
m, where the first number is not smaller than the second number:

Pm �
�ðn1,n2Þ : n1 +n2 =m,n1 ≥n2 ≥ 1

� ð15Þ

The algorithm recursively duplicates and unfolds the strings until
all subtrees at the bottom level comprise single leaf nodes. Initially, we
assigned the singleton tree collapsing all leaf nodes to the tree set:
T : T0 � Nð Þ� �

: The process was repeated for the following steps until
no tree in T contains numbers greater than 1:
1. Select a tree T 2 T which contains numbers greater than 1.
2. Find the first number in T greater than 1 and denote it as m.
3. For each binary split ðn1,n2Þ 2 Pm, duplicate T and replace the

substring mð Þ with ð n1

� �
, n2

� �Þ. Denote the modified tree as
Tm!ðn1 ,n2Þ. T T ∪ fTm! n1 ,n2ð Þg.

4. Remove T from T .

The output of phase 1 is the collection of all binary tree structures
T . It is time-consuming for small complexes and intractable for non-
small complexes since the number of binary tree structures scales
exponentially with the number of leaf nodes (T nð Þ= 2nð Þ!

n+ 1ð Þ!n! where n is
the number of nodes). For instance, for 10, 20, and 50 nodes, there are
16796, 6:5641 × 109,or 1:9783 × 1027 binary trees, respectively.

Phase 2: Enumerating all leaf node assignments of eachbinary tree
structure.

A naïve approach to generate all leaf node assignments of a binary
tree structure is to exhaustively permute N integers and assign each
permuted integer to a leaf node in the order of the regular expression
(from left to right). This approach yields multiple permutations cor-
responding to the same equivalent assignment. If the left and right
branches of a subtree have identical structures, then two distinct
permutations are equivalent by swapping the leaf nodes under the two
branches. An accurate algorithm should avoid this type of over-
counting and report a list of distinct assembly histories respecting a
binary tree structure. A T 2 T is the regular expression of a binary tree
structure. We denote an ordered partition of N distinct integers
ρK � fρK

1 ,ρ
K
2 , � � � ,ρK

K

�
, whereK is the number of components, and each

component ρK
i consists of distinct integers from f1,2, � � � ,Ng. Initially,

construct ρ1 � f 1,2, � � � ,Nf gg and a listA= fρ1g. ρ1 concentrates all theN
integers in the root node. The following procedures were repeated
until all elements in A has N components:
1. Select a ρK2A with K<N.
2. Find the first component in ρK consisting of more than one inte-

ger. Denote it as ρK
i � fx1, � � � , xQg.

3. Identify the node vi in T corresponding to component ρK
i . By

definition vi is an internal node and has two children.
4. Identify the subtrees TLi

and TRi
of the left and right branches

under vi. Denote the numbersof leaf nodes inTLi
and TRi

to beNLi
and NRi

, respectively, where NLi
+NRi

=Q.

5. Enumerate all
NLi

+NRi

� �
!

NLi
!NRi

! � 0exNLi
+NRi

NLi

� �
combinations of split

NLi
+NRi

integers into two groups with NLi
and NRi

members,

respectively.
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51. If subtrees TLi
and TRi

have different structures, then each split
in step 5 induces a unique refined partition of component ρK

i .
Duplicate ρK and replace component ρK

i with two components
ρK
Li
and ρK

Ri
respecting the split. The resulting partition hasK + 1

components: ρK + 1
i!Li ,Ri

 ρK ,A A∪ fρK + 1
i!Li ,Ri

g.
52. If subtrees TLi

and TRi
have identical structures, then only half

of the 0exNLi
+NRi

NLi

� �
splits are unique since the splits are

equivalent by swapping the left and right branches of the tree.
Thus, repeat 5.1 only on half of the unique splits.

6. Remove ρK from A.

The output is a list of N-component partitions ρN respecting the
tree structure T . According to these procedures, each internal node

induces 0exNLi
+NRi

NLi

� �
unique partitions if the left and right bran-

ches have different structures and 1
2 0exNLi

+NRi
NLi

� �
unique parti-

tions otherwise. The total number of leaf node assignments of a tree T
is the product of these terms over all internal nodes and becomes

ð12Þ
σðTÞ

N!, where σðTÞ is the number of the internal nodes in T with
identical structures of the left and right branches. For instance, a tree
with two-leaf nodes has 1

2 � 0ex21ð Þ= 1 unique assignment, and a sym-
metric binary tree with eight leaf nodes has seven internal nodes with
identical left and right branches, and the number of unique assign-

ments is ð12Þ
7
8!= 315. The number of leaf node assignments also grows

exponentially with the number of leaf nodes. As an example, for the
eIF3 complex with 13 distinct subunits, there are 983 binary tree
structures and a total of 316,234,143,225 (∼3.16 × 1011) possible
assembly trees.

Calculation of likelihood scores for all possible assembly trees
For each assembly history (a binary tree with a leaf node assignment),
we proposed an algorithm to evaluate its likelihood score in terms of
the matrix of pairwise cooperative stability scores. In brief, we parsed
the tree into a unique sequence of binary assembly events. The prob-
ability of each assembly event is positively related to the scores of
member pairs between the two subcomplexes, and the likelihood
score is the product of probabilities over these assembly events.
Moreover, the probability of merging large subcomplexes at later
stages of the assembly sequence should be considerably higher since
the number of possible choices ismore limited. For instance, in the last
stage, the remaining two subcomplexes have only one choice of
merging into the full complex with probability 1 (we ignore the pos-
sibility of no change). Therefore, each term denotes the conditional
probability of an assembly event among all possible assembly events
compatible with the current subcomplex configurations.

Input:
Assembly binary tree (T) and leaf node assignment (ρ).
Cooperative stability matrix (X)

Output:
Likelihood score LðT ,ρ;X Þ

Procedures:
1. Set the initial subcomplex configuration c1 = {u1,u2, . . . :,uN} of N

distinct monomers.
2. Parse ðT ,ρÞ into a sequence of triads ðτ1,τ2, � � � ,τNÞ following a

topological order from left to right. A triad τ= (π,γ1,γ2) consists of
a parent node π and two children nodes γ1,γ2.

3. Set L1 = 1.
4. For t = 1 to ðN � 1Þ repeat the following procedures:

41. Obtain all subcomplexes according to ðT ,ρÞ and the current
configuration ct .

42. Identify the triad τt = (π,γ1,γ2) at step t, and the monomers
belonging to γ1 and γ2. If the iteration step t is not specified, we
dispensewith the subscript t anddenote the triad τ= (π,γ1,γ2).

43. Calculate the assembly tendency qτ as the geometric mean of
all pairwise cooperative stability strengths betweenmonomers
belonging to γ1 and γ2:

qτ =P πjγ1,γ2
� �

=
Y

i2γ1j2γ2

XijX ji

0
@

1
A

1
2jγ1 jjγ2 j

ð16Þ

44. Construct MCt
as the set of all subcomplex pairs in ct . Each

member μ 2 MCt
represents a possible assembly event com-

patible with the current configuration. Calculate the assembly
tendency qμ of each μ 2 MCt

.
45. Update the subcomplex configuration of the next step by

merging monomers in γ1 and γ2: ct ! ct + 1.
46. Evaluate the conditional probability of transitioning the sub-

complex configuration from ct to ct + 1 by normalizing the sum
of the assembly tendencies over all possible assembly events:

P ct + 1jct
� �

=
qτtP

μ2MCt
qμ

ð17Þ

47. Update Lt + 1 =Lt � P ct + 1jct
� �

:

5. The likelihood score is L T ,ρ;Xð Þ=LN :

We conducted an exhaustive search by calculating the likelihood
scores of all possible assembly trees of the eIF3, proteasome lid, and
CSN complexes. We wrote a custom Python script with Cython for
acceleration and with Multiprocessing for parallel computing and ran
the script on a high-performance computer (Intel® XEON® E7-4870,
2.30GHz, 32 cores were used).

DAG representation of top-ranking assembly trees
Multiple complex assembly histories are likely to occur according to
the cooperative stability data. To aggregate the information from
multiple assembly histories, we consolidated the top 1000 assembly
trees (in terms of the likelihood scores) by overlaying them in one
single DAG. For simplicity, we set a cutoff (>30) to filter out low-
frequency edges. Afterfiltering, somenodesmight lose connections to
other nodes.We removed these nodes by checking if they have path(s)
to/from the final complex/monomer using the shortest path length
function in the Networkx python package. We then drew the DAG and
used the edge weight (thickness) and node size to represent their
frequency among the 1,000 top-ranking trees.

Quantification of the two-branch feature in the DAG of CSN
assembly trees
Overview. The CSN assembly DAG manifests as two big components
with sparse connections between them. To test if this two-branch
feature is statistically significant, we developed a quantitative analysis
of leaf nodes in a DAG for statistical tests. We first calculated the dis-
tances between the nine CSN subunits in the DAG. By aggregating
subunits into two groups, the distances were classified into two types
(intra-group distances or inter-group distances). We then performed a
statistical test for differences between these two distancedistributions
and calculated the p-value from 10,000 bootstrap samples.

Input:
DAG representation of the assembly trees
Two groups of leaf nodes in the DAG
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Output:
p-value of the null hypothesis that there is no difference between

these two groups
Procedure:

(1) Quantify distances between leaf nodes in the DAG
(2) Calculate the pairwise distances and obtain the inter-group

and intra-
group distance distributions

(3) Perform theKolmogorov–Smirnov test on these two distributions
(4) Bootstrapping to estimate the p-value

Distance quantification for subunits in a DAG
Intuitively, the distance between two subunits in one assembly history
(binary tree) is the number of steps needed to coalesce into one sub-
complex, which is half of the distance of the shortest path connecting
them. Since multiple assembly histories may occur for any coalescent
event, we approximated coalescence by a Markov process defined in
the DAG. Suppose a node v in the DAG is adjacent to k higher-order
nodes u1, � � � ,uk with edge weights w1,w2, . . . ,wk , respectively. We
define the probability of transitioning from v to ui as the normalized
weight of wi : Pðv! uiÞ � ωi =

wiPk

i = 1
wi

. The probability of traversing

along a specific path ψ= ðe1,e2, � � � ,elÞ is the product of the normalized

weights of its edges: Pψ =
Ql

i = 1ωei
.

We then considered two-leaf nodes A and B in the DAG. We
defined a most recent common ancestor (MRCA) of A and B as node S
where the paths from A to S and the paths from B to S share no nodes
other than S. S represents a subcomplex where A and B coalesce
together. S = fS1,S2, � � � ,SCg denotes the collection of all MRCAs of A
and B. For each Si2S, suppose there are paths ϕA!Si

1 , � � � ,ϕA!Si
nA!Si

con-
necting A to Si and paths ϕB!Si

1 , � � � ,ϕB!Si
nB!Si

connecting B to Si. By
averaging the probabilities of all possiblepaths fromA to Si and fromB
to Si, we obtained probabilities for these two subunits to reach the
subcomplex Si:

PðA!SiÞavg =
1

nA!Si

XnA!Si

j = 1

P
ϕ
A!Si
j

,PðB!SiÞavg =
1

nB!Si

XnB!Si

j = 1

P
ϕ
B!Si
j

ð18Þ

Thus, the probability for A and B to coalesce (PAB) can be calcu-
lated as the average of the product of probabilities for A and B coa-
lescing to each Si:

PAB =
1
N

XN

i = 1

P A!Sið Þavg P B!Sið Þavg ð19Þ

We then defined the distance between A and B (DAB) as the reci-
procal of PAB:

DAB =
1

PAB
ð20Þ

Calculation of distances between all pairs of subunits in theDAG
According to our description in the previous section, we calculated
9
2

� �
=36 distances for all possible pairs of all nine CSN subunits in the

DAG of the top-2000 assembly trees. We divided the nine CSN subunits
into two groups (6, 7, 5, 4, 2 and 9, 8, 3, 1) based on the two modules
identified by modularity analysis. Thus, the 36 distances could be clas-
sified into intra-groupdistances (n = 16)or inter-groupdistances (n=20).

Statistical testing and bootstrap p-values
We tested if the two types of distances are drawn from the same dis-
tribution by means of a two-sample Kolmogorov–Smirnov test
(KS test):

H0: The distributions of intra- and inter-group distances in the CSN
DAG are from the same population of random DAGs.

H1: The distributions of intra- and inter-group distances in the CSN
DAG are from different populations.

We calculated the KS test statistic t and then performed 10,000
bootstraps by randomizing the order of the nine CSN subunits in the
DAG and re-calculated the pairwise distances and statistic t*. Then we
estimated the p-value as:

pvalue =

P10000
i = 1 I t�i ≥ t

� �
10000

ð21Þ

where I (condition) = 1 when the condition is true and 0 otherwise.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The atomic coordinates used in this study are available in the Protein
Data Bank (PDB) under accession codes 5L4K, 4D10, and 6YBD. All data
generated in this study are provided in the Supplementary Information
and Source Data files. Source data are provided with this paper.

Code availability
The source codes for qualifying cooperative stabilization by mathe-
matical modeling and reconstruction of protein complex assembly
processes have been deposited in Zenodo61,62.
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